Difference between revisions of "Checklists"
m |
m |
||
(13 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
|title=PRIMO.ai | |title=PRIMO.ai | ||
|titlemode=append | |titlemode=append | ||
− | |keywords=artificial, intelligence, machine, learning, models | + | |keywords=ChatGPT, artificial, intelligence, machine, learning, GPT-4, GPT-5, NLP, NLG, NLC, NLU, models, data, singularity, moonshot, Sentience, AGI, Emergence, Moonshot, Explainable, TensorFlow, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Hugging Face, OpenAI, Tensorflow, OpenAI, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Meta, LLM, metaverse, assistants, agents, digital twin, IoT, Transhumanism, Immersive Reality, Generative AI, Conversational AI, Perplexity, Bing, You, Bard, Ernie, prompt Engineering LangChain, Video/Image, Vision, End-to-End Speech, Synthesize Speech, Speech Recognition, Stanford, MIT |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools |
− | |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools | + | |
+ | <!-- Google tag (gtag.js) --> | ||
+ | <script async src="https://www.googletagmanager.com/gtag/js?id=G-4GCWLBVJ7T"></script> | ||
+ | <script> | ||
+ | window.dataLayer = window.dataLayer || []; | ||
+ | function gtag(){dataLayer.push(arguments);} | ||
+ | gtag('js', new Date()); | ||
+ | |||
+ | gtag('config', 'G-4GCWLBVJ7T'); | ||
+ | </script> | ||
}} | }} | ||
− | [https://www.youtube.com/results?search_query= | + | [https://www.youtube.com/results?search_query=ai+checklist YouTube search...] |
− | [https://www.google.com/search?q= | + | [https://www.quora.com/search?q=ai%20checklist ... Quora search] |
+ | [https://www.google.com/search?q=ai+checklist ...Google search] | ||
+ | [https://news.google.com/search?q=ai+checklist ...Google News] | ||
+ | [https://www.bing.com/news/search?q=ai+checklist&qft=interval%3d%228%22 ...Bing News] | ||
− | * [[ | + | * [[Strategy & Tactics]] ... [[Project Management]] ... [[Best Practices]] ... [[Checklists]] ... [[Project Check-in]] ... [[Evaluation]] ... [[Evaluation - Measures|Measures]] |
− | + | * [[AI Solver]] ... [[Algorithms]] ... [[Algorithm Administration|Administration]] ... [[Model Search]] ... [[Discriminative vs. Generative]] ... [[Train, Validate, and Test]] | |
− | + | * [[Risk, Compliance and Regulation]] ... [[Ethics]] ... [[Privacy]] ... [[Law]] ... [[AI Governance]] ... [[AI Verification and Validation]] | |
− | + | * [[Data Science]] ... [[Data Governance|Governance]] ... [[Data Preprocessing|Preprocessing]] ... [[Feature Exploration/Learning|Exploration]] ... [[Data Interoperability|Interoperability]] ... [[Algorithm Administration#Master Data Management (MDM)|Master Data Management (MDM)]] ... [[Bias and Variances]] ... [[Benchmarks]] ... [[Datasets]] | |
− | * [[AI Governance]] | ||
− | * | ||
* [[Case Studies]] | * [[Case Studies]] | ||
** [[Hospitality, Food, and Spirits]] | ** [[Hospitality, Food, and Spirits]] | ||
Line 20: | Line 30: | ||
** [https://pair.withgoogle.com/guidebook/patterns/how-do-i-get-started Patterns] | ** [https://pair.withgoogle.com/guidebook/patterns/how-do-i-get-started Patterns] | ||
* [https://www.jennwv.com/papers/checklists.pdf Co-Designing Checklists to Understand Organizational Challenges and Opportunities around Fairness in AI | M. Madaio, L. Stark, J. Vaughan, and H. Wallach] | * [https://www.jennwv.com/papers/checklists.pdf Co-Designing Checklists to Understand Organizational Challenges and Opportunities around Fairness in AI | M. Madaio, L. Stark, J. Vaughan, and H. Wallach] | ||
− | |||
Line 39: | Line 48: | ||
* [https://www.ic.unicamp.br/~sandra/pdf/Hands_On_Machine_Learning_with_Scikit_Learn_and_TensorFlow-427-432.pdf Machine Learning project checklist | IC-Unicamp] | * [https://www.ic.unicamp.br/~sandra/pdf/Hands_On_Machine_Learning_with_Scikit_Learn_and_TensorFlow-427-432.pdf Machine Learning project checklist | IC-Unicamp] | ||
* [https://www.datanami.com/2017/09/01/machine-learning-ready-7-part-checklist/ Machine Learning: Are You Ready? A 7-Part Checklist | Kimberly Nevala] | * [https://www.datanami.com/2017/09/01/machine-learning-ready-7-part-checklist/ Machine Learning: Are You Ready? A 7-Part Checklist | Kimberly Nevala] | ||
− | * [https://ai.facebook.com/blog/new-code-completeness-checklist-and-reproducibility-updates/ New code completeness checklist and reproducibility updates |] [[Facebook]] AI | + | * [https://ai.facebook.com/blog/new-code-completeness-checklist-and-reproducibility-updates/ New code completeness checklist and reproducibility updates |] [[Meta|Facebook]] AI |
* [https://www.jeremyjordan.me/ml-projects-guide/ Organizing machine learning projects: project management guidelines | Jeremy Jordan] | * [https://www.jeremyjordan.me/ml-projects-guide/ Organizing machine learning projects: project management guidelines | Jeremy Jordan] | ||
Line 59: | Line 68: | ||
<youtube>LqLCZshLgVM</youtube> | <youtube>LqLCZshLgVM</youtube> | ||
<b>Common mistakes made in Machine Learning Models | <b>Common mistakes made in Machine Learning Models | ||
− | </b><br>Analytics University You will learn the common mistake people make while building machine learning models. Machine learning models are easy to build but need attention to details. | + | </b><br>[[Analytics]] University You will learn the common mistake people make while building machine learning models. Machine learning models are easy to build but need attention to details. |
− | The common mistakes could be: 1- taking Default Loss Function for granted, 2- Using one Algorithm / Method For All Problems: 3- Ignoring Outliers: 4- No Proper Dealing With Cyclical Features, 5- L1/L2 Regularisation Without Standardization, 6- Interpreting Coefficients From Linear or Logistic Regressions as features importance. Analytics Study Pack : https://analyticuniversity.com/ | + | The common mistakes could be: 1- taking Default Loss Function for granted, 2- Using one Algorithm / Method For All Problems: 3- Ignoring Outliers: 4- No Proper Dealing With Cyclical Features, 5- L1/L2 Regularisation Without Standardization, 6- Interpreting Coefficients From Linear or Logistic Regressions as features importance. [[Analytics]] Study Pack : https://analyticuniversity.com/ |
|} | |} | ||
|<!-- M --> | |<!-- M --> |
Latest revision as of 21:44, 5 March 2024
YouTube search... ... Quora search ...Google search ...Google News ...Bing News
- Strategy & Tactics ... Project Management ... Best Practices ... Checklists ... Project Check-in ... Evaluation ... Measures
- AI Solver ... Algorithms ... Administration ... Model Search ... Discriminative vs. Generative ... Train, Validate, and Test
- Risk, Compliance and Regulation ... Ethics ... Privacy ... Law ... AI Governance ... AI Verification and Validation
- Data Science ... Governance ... Preprocessing ... Exploration ... Interoperability ... Master Data Management (MDM) ... Bias and Variances ... Benchmarks ... Datasets
- Case Studies
- ML Design Guides | Google ... People + AI Guidebook is a set of methods, best practices and examples for designing with AI
- Co-Designing Checklists to Understand Organizational Challenges and Opportunities around Fairness in AI | M. Madaio, L. Stark, J. Vaughan, and H. Wallach
Lists...
- The Essential Machine Learning Project Checklist | |Patrick De Guzman - Towards Data Science ...To guide you step-by-step from raw data to a working ML model.
- ML project checklist | Subhojit Banerjee - Medium
- The Machine Learning Project Checklist | Matthew Mayo
- A Checklist for working with Complex ML Problems | Sanchit Aggarwal
- Data project checklist | fast.ai
- 5 Questions To Ask Before Putting AI Into Practice And A Checklist For Success | Acquisition International
- Machine Learning cheat sheets – Compilation 2020 | RoboticsBiz
- Cheat Sheets for AI, Neural Networks, Machine Learning, Deep Learning & Big Data | Stefan Kojouharov - BecomingHuman.AI - Medium ...GitHub ...PDF
- The complete list to make you an AI Pro | Rita Dass - Predict - Medium
- How to Use a Machine Learning Checklist to Get Accurate Predictions, Reliably (even if you are a beginner) | Jason Brownlee
- Machine Learning project checklist | IC-Unicamp
- Machine Learning: Are You Ready? A 7-Part Checklist | Kimberly Nevala
- New code completeness checklist and reproducibility updates | Facebook AI
- Organizing machine learning projects: project management guidelines | Jeremy Jordan
Common Mistakes
YouTube search... ...Google search
- 12 predictive analytics screw-ups | Robert L. Mitchell
- Ten quick tips for machine learning in computational biology | Davide Chicco
- Top 6 errors novice machine learning engineers make | Christopher Dossman
- 5 machine learning mistakes – and how to avoid them | SAS
- 13 Common Mistakes Amateur Data Scientists Make and How to Avoid Them? | Pranav Dar - Analytics Vidhya
|
|
|
|
AI Failures
|
|