Difference between revisions of "Embedding"
m |
m |
||
Line 83: | Line 83: | ||
# For [[visualization]] of concepts and relations between categories. | # For [[visualization]] of concepts and relations between categories. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
= OpenAI Note = | = OpenAI Note = |
Revision as of 06:27, 16 August 2023
YouTube ... Quora ...Google search ...Google News ...Bing News
- Embedding ... Fine-tuning ... Search ... Clustering ... Recommendation ... Anomaly Detection ... Classification ... Dimensional Reduction ... ...find outliers
- Prompting vs AI Model Fine-Tuning vs AI Embeddings
- AI Solver ... Algorithms ... Administration ... Model Search ... Discriminative vs. Generative ... Optimizer ... Train, Validate, and Test
- Math for Intelligence ... Finding Paul Revere ... Social Network Analysis (SNA) ... Dot Product ... Kernel Trick
- Capabilities:
- Search (where results are ranked by relevance to a query string)
- Clustering (where text strings are grouped by similarity)
- Recommendations (where items with related text strings are recommended)
- Anomaly Detection (where outliers with little relatedness are identified)
- Classification (where text strings are classified by their most similar label)
- Dimensional Reduction
- ...find outliers ... diversity measurement (where similarity distributions are analyzed)
- Choosing the Right Embedding Model: A Guide for LLM Applications | Ryan Nguyen - Medium
- Vector Embeddings: From the Basics to Production | Sam Partee - Partee.IO
Types:
AI Encoding & AI Embedding
- Excel ... Documents ... Database ... Graph ... LlamaIndex
The terms "AI encodings" and "AI embeddings" are sometimes used interchangeably, but there is a subtle difference between the two.
- Encodings are a general term for any representation of data that is used by a Machine Learning (ML) model. This could be a one-hot encoding, a bag-of-words representation, or a more complex representation such as a word embedding.
- Embeddings are a specific type of AI encoding that is learned from data. Embeddings are typically represented as vectors of real numbers, and they capture the meaning and context of the data they represent.
In other words, all embeddings are encodings, but not all encodings are embeddings. Here are some examples of AI encodings that are not embeddings:
- One-hot Encoding is a simple way to represent categorical data as a vector. For example, the word "dog" would be represented as a vector of 100 zeros, with a single 1 at the index corresponding to the word "dog" in a vocabulary of 100 words.
- Bag-of-words is a more sophisticated way to represent text data as a vector. This involves counting the number of times each word appears in a document, and then representing the document as a vector of these counts.
AI Embeddings are a type of representation of text that captures the meaning of the text. This can be used for tasks such as search, classification, and recommendation. allow the model to search in a “database” and return the best result. Here are some examples of AI Embeddings:
- Word embeddings are a type of embedding that represents words as vectors of real numbers. These vectors are typically learned from a large corpus of text, and they capture the meaning and context of the words they represent.
- Image embeddings are a type of embedding that represents images as vectors of real numbers. These vectors are typically learned from a large dataset of images, and they capture the visual features of the images they represent.
Embedding...
- projecting an input into another more convenient representation space. For example we can project (embed) faces into a space in which face matching can be more reliable. | Chomba Bupe
- a mapping of a discrete — categorical — variable to a vector of continuous numbers. In the context of neural networks, embeddings are low-dimensional, learned continuous vector representations of discrete variables. Neural Network embeddings are useful because they can reduce the dimensionality of categorical variables and meaningfully represent categories in the transformed space. Neural Network Embeddings Explained | Will Koehrsen - Towards Data Science
- a relatively low-dimensional space into which you can translate high-dimensional vectors. Embeddings make it easier to do Machine Learning (ML) on large inputs like sparse vectors representing words. Ideally, an embedding captures some of the semantics of the input by placing semantically similar inputs close together in the embedding space. An embedding can be learned and reused across models. Embeddings | Machine Learning Crash Course
- Search: Embeddings can be used to rank search results by relevance to a query string.
- Clustering: Embeddings can be used to group text strings by similarity.
- Recommendations: Embeddings can be used to recommend items that are related to a user's interests.
- Anomaly detection: Embeddings can be used to identify outliers with little relatedness.
- Diversity measurement: Embeddings can be used to analyze similarity distributions.
- Classification: Embeddings can be used to classify text strings by their most similar label.
By employing techniques like Word Embeddings, Sentence Embeddings, or Contextual embedding, vector embeddings provide a compact and meaningful representation of textual data. Word embeddings, for instance, map words to fixed-length vectors, where words with similar meanings are positioned closer to one another in the vector space. This allows for efficient semantic search, information retrieval, and language understanding tasks.
Embeddings have 3 primary purposes:
- Finding nearest neighbors in the embedding space. These can be used to make recommendations based on user interests or cluster categories.
- As input to a Machine Learning (ML) model for a supervised task.
- For visualization of concepts and relations between categories.
OpenAI Note
- New and improved embedding model ... We are excited to announce a new embedding model which is significantly more capable, cost effective, and simpler to use.
- Embeddings
Embeddings are a numerical representation of text that can be used to measure the relateness between two pieces of text. Our second generation embedding model, text-embedding-ada-002 is a designed to replace the previous 16 first-generation embedding models at a fraction of the cost. An embedding is a vector (list) of floating point numbers. The distance between two vectors measures their relatedness. Small distances suggest high relatedness and large distances suggest low relatedness.