Difference between revisions of "Visualization"
m |
m |
||
(28 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
|title=PRIMO.ai | |title=PRIMO.ai | ||
|titlemode=append | |titlemode=append | ||
− | |keywords=artificial, intelligence, machine, learning, models | + | |keywords=ChatGPT, artificial, intelligence, machine, learning, GPT-4, GPT-5, NLP, NLG, NLC, NLU, models, data, singularity, moonshot, Sentience, AGI, Emergence, Moonshot, Explainable, TensorFlow, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Hugging Face, OpenAI, Tensorflow, OpenAI, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Meta, LLM, metaverse, assistants, agents, digital twin, IoT, Transhumanism, Immersive Reality, Generative AI, Conversational AI, Perplexity, Bing, You, Bard, Ernie, prompt Engineering LangChain, Video/Image, Vision, End-to-End Speech, Synthesize Speech, Speech Recognition, Stanford, MIT |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools |
− | |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools | + | |
+ | <!-- Google tag (gtag.js) --> | ||
+ | <script async src="https://www.googletagmanager.com/gtag/js?id=G-4GCWLBVJ7T"></script> | ||
+ | <script> | ||
+ | window.dataLayer = window.dataLayer || []; | ||
+ | function gtag(){dataLayer.push(arguments);} | ||
+ | gtag('js', new Date()); | ||
+ | |||
+ | gtag('config', 'G-4GCWLBVJ7T'); | ||
+ | </script> | ||
}} | }} | ||
− | [https://www.youtube.com/results?search_query=chart+graphTensorBoard+VisualDL+Netron+Feature | + | [https://www.youtube.com/results?search_query=chart+graphTensorBoard+VisualDL+Netron+Feature+Visualization+~tool+ai YouTube] |
− | [https://www.google.com/search?q=chart+ | + | [https://www.quora.com/search?q=chart%20graph%20TensorBoard%20ai%20bVisualDL%20Feature%20Visualization ... Quora] |
+ | [https://www.google.com/search?q=chart+graph+TensorBoard+VisualDL+Netron+Feature+Visualization+~tool+ai ...Google search] | ||
+ | [https://news.google.com/search?q=chart+graph+TensorBoard+VisualDL+Netron+Feature+Visualization+~tool+ai ...Google News] | ||
+ | [https://www.bing.com/news/search?q=chart+graph+TensorBoard+VisualDL+Netron+Feature+Visualization+~tool+ai&qft=interval%3d%228%22 ...Bing News] | ||
− | * [[ | + | * [[Analytics]] ... [[Visualization]] ... [[Graphical Tools for Modeling AI Components|Graphical Tools]] ... [[Diagrams for Business Analysis|Diagrams]] & [[Generative AI for Business Analysis|Business Analysis]] ... [[Requirements Management|Requirements]] ... [[Loop]] ... [[Bayes]] ... [[Network Pattern]] |
+ | * [[Algorithm Administration#Hyperparameter|Hyperparameter]]s | ||
+ | * [[Predictive Analytics]] ... [[Operations & Maintenance|Predictive Maintenance]] ... [[Forecasting]] ... [[Market Trading]] ... [[Sports Prediction]] ... [[Marketing]] ... [[Politics]] ... [[Excel#Excel - Forecasting|Excel]] | ||
+ | * [[Graph]] | ||
+ | ** [[Data Flow Graph (DFG)]] | ||
+ | ** [[Graphical Tools for Modeling AI Components]] | ||
+ | * [https://towardsdatascience.com/the-simpsons-meets-data-visualization-ef8ef0819d13 The Simpsons meets Data Visualization | Adam Reevesman -Towards Data Science] | ||
+ | * [[Robotics]] ... [[Transportation (Autonomous Vehicles)|Vehicles]] ... [[Autonomous Drones|Drones]] ... [[3D Model]] ... [[Point Cloud]] | ||
+ | * [[Simulation]] ... [[Simulated Environment Learning]] ... [[Minecraft]]: [[Minecraft#Voyager|Voyager]] | ||
+ | * [[Data Science]] | ||
+ | ** [[Data Governance]] | ||
+ | *** [[Benchmarks]] | ||
+ | *** [[Data Preprocessing]] | ||
+ | **** [[Feature Exploration/Learning]] | ||
+ | **** [[Data Quality]] ...[[AI Verification and Validation|validity]], [[Evaluation - Measures#Accuracy|accuracy]], [[Data Quality#Data Cleaning|cleaning]], [[Data Quality#Data Completeness|completeness]], [[Data Quality#Data Consistency|consistency]], [[Data Quality#Data Encoding|encoding]], [[Data Quality#Zero Padding|padding]], [[Data Quality#Data Augmentation, Data Labeling, and Auto-Tagging|augmentation, labeling, auto-tagging]], [[Data Quality#Batch Norm(alization) & Standardization| normalization, standardization]], and [[Data Quality#Imbalanced Data|imbalanced data]] | ||
+ | *** [[Bias and Variances]] | ||
+ | *** [[Algorithm Administration#Master Data Management (MDM)|Master Data Management (MDM)]] | ||
+ | **** [[Natural Language Processing (NLP)#Managed Vocabularies |Managed Vocabularies]] | ||
+ | **** [[Datasets]] | ||
+ | *** [[Privacy]] in Data Science | ||
+ | *** [[Data Interoperability]] | ||
* Tools: | * Tools: | ||
+ | ** [[Excel]] ... [[LangChain#Documents|Documents]] ... [[Database|Database; Vector & Relational]] ... [[Graph]] ... [[LlamaIndex]] | ||
** [[Python#Visualization with Python |Visualization with Python]] | ** [[Python#Visualization with Python |Visualization with Python]] | ||
** [https://ai.google/research/teams/brain/pair Google: People + AI Research (PAIR)] | ** [https://ai.google/research/teams/brain/pair Google: People + AI Research (PAIR)] | ||
Line 25: | Line 58: | ||
** [https://explosion.ai/demos/displacy displaCy] | ** [https://explosion.ai/demos/displacy displaCy] | ||
* [https://www.kdnuggets.com/2019/01/five-best-data-visualization-libraries.html The Five Best Data Visualization Libraries | Lio Fleishman, Sisense] | * [https://www.kdnuggets.com/2019/01/five-best-data-visualization-libraries.html The Five Best Data Visualization Libraries | Lio Fleishman, Sisense] | ||
− | ** [[ | + | ** [[JavaScript#D3.js|D3.js]] |
** [https://uber.github.io/react-vis/documentation/welcome-to-react-vis React-vis] | ** [https://uber.github.io/react-vis/documentation/welcome-to-react-vis React-vis] | ||
** [https://www.chartjs.org/ Chart.js] | ** [https://www.chartjs.org/ Chart.js] | ||
Line 45: | Line 78: | ||
** [https://looker.com/product/visualizations Looker] | ** [https://looker.com/product/visualizations Looker] | ||
** [https://www.paraview.org/ Paraview (open source)] | ** [https://www.paraview.org/ Paraview (open source)] | ||
− | ** [ | + | ** [[Excel]] ... [[LangChain#Documents|Documents]] ... [[Database]] ... [[Graph]] ... [[Algorithm Administration#AIOps/MLOps|AIOps/MLOps]] ... [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)|AIaaS/MLaaS]] |
** [https://www.oracle.com/uk/business-analytics/analytics-cloud.html Oracle Analytics Cloud] | ** [https://www.oracle.com/uk/business-analytics/analytics-cloud.html Oracle Analytics Cloud] | ||
** [https://www.ibm.com/uk-en/products/cognos-analytics IBM Cognos Analytics] | ** [https://www.ibm.com/uk-en/products/cognos-analytics IBM Cognos Analytics] | ||
Line 58: | Line 91: | ||
* [https://www.infoq.com/presentations/ml-dl-visualization Understanding ML/DL Models using Interactive Visualization Techniques | Chakri Cherukuri] | * [https://www.infoq.com/presentations/ml-dl-visualization Understanding ML/DL Models using Interactive Visualization Techniques | Chakri Cherukuri] | ||
* [https://machinelearningmastery.com/data-visualization-methods-in-python/ A Gentle Introduction to Data Visualization Methods in Python | Jason Brownlee - Machine Learning Mastery] | * [https://machinelearningmastery.com/data-visualization-methods-in-python/ A Gentle Introduction to Data Visualization Methods in Python | Jason Brownlee - Machine Learning Mastery] | ||
− | * [[ | + | * [https://virtualitics.com/ Virtualitics] ... Get more from your data and your team with AI-powered data exploration ... from Descriptive to [[Prescriptive Analytics | Prescriptive]] |
− | + | * [[Artificial General Intelligence (AGI) to Singularity]] ... [[Inside Out - Curious Optimistic Reasoning| Curious Reasoning]] ... [[Emergence]] ... [[Moonshots]] ... [[Explainable / Interpretable AI|Explainable AI]] ... [[Algorithm Administration#Automated Learning|Automated Learning]] | |
− | |||
− | |||
* [[(Deep) Convolutional Neural Network (DCNN/CNN)]] | * [[(Deep) Convolutional Neural Network (DCNN/CNN)]] | ||
* [https://www.evolvingai.org/files/mfv_icml_workshop_16.pdf Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. Visualization for Deep Learning workshop | Nguyen A, Yosinski J, Clune J], 2016 | * [https://www.evolvingai.org/files/mfv_icml_workshop_16.pdf Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. Visualization for Deep Learning workshop | Nguyen A, Yosinski J, Clune J], 2016 | ||
* [https://www.evolvingai.org/files/2016-VelezClune-SRC.pdf Identifying core functional networks and functional modules within artificial neural networks via subsets regression | Velez R, Clune J], 2016 | * [https://www.evolvingai.org/files/2016-VelezClune-SRC.pdf Identifying core functional networks and functional modules within artificial neural networks via subsets regression | Velez R, Clune J], 2016 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [https://bookdown.org/max/FES/exploratory-visualizations.html Feature Engineering and Selection: A Practical Approach for Predictive Models - 4 Exploratory Visualizations | Max Kuhn and Kjell Johnson] | * [https://bookdown.org/max/FES/exploratory-visualizations.html Feature Engineering and Selection: A Practical Approach for Predictive Models - 4 Exploratory Visualizations | Max Kuhn and Kjell Johnson] | ||
Line 111: | Line 126: | ||
<youtube>Q73ADVZCqSU</youtube> | <youtube>Q73ADVZCqSU</youtube> | ||
<youtube>laCZqS2Uzc4</youtube> | <youtube>laCZqS2Uzc4</youtube> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
= Shan Carter = | = Shan Carter = |
Latest revision as of 08:20, 16 June 2024
YouTube ... Quora ...Google search ...Google News ...Bing News
- Analytics ... Visualization ... Graphical Tools ... Diagrams & Business Analysis ... Requirements ... Loop ... Bayes ... Network Pattern
- Hyperparameters
- Predictive Analytics ... Predictive Maintenance ... Forecasting ... Market Trading ... Sports Prediction ... Marketing ... Politics ... Excel
- Graph
- The Simpsons meets Data Visualization | Adam Reevesman -Towards Data Science
- Robotics ... Vehicles ... Drones ... 3D Model ... Point Cloud
- Simulation ... Simulated Environment Learning ... Minecraft: Voyager
- Data Science
- Tools:
- Excel ... Documents ... Database; Vector & Relational ... Graph ... LlamaIndex
- Visualization with Python
- Google: People + AI Research (PAIR)
- TensorBoard | Google
- TensorFlow Playground | Google
- Facets | Google
- Projector.TensorFlow.org] | Google ...3D visualization of search queries
- Visualize Keras Models with One Line of Code | Lukas & Jeff - Weights & Biases
- Visual DL
- Netron
- Yellowbrick
- CNNVis
- 3D Visualization of a Convolutional Neural Network (CNN)
- ANN Visualizer
- displaCy
- The Five Best Data Visualization Libraries | Lio Fleishman, Sisense
- 5 Python Libraries for Creating Interactive Plots | Melissa Bierly | Mode
- The 9 Best Analytics Tools For Data Visualization Available Today and The 10 Best Data Analytics And BI Platforms And Tools In 2020 | Bernard Marr - Forbes
- Data Visualization for Artificial Intelligence, and Vice Versa | Nicolas Kruchten
- Overview of Model Visualization Architecture and Types | XenonStack
- Understanding ML/DL Models using Interactive Visualization Techniques | Chakri Cherukuri
- A Gentle Introduction to Data Visualization Methods in Python | Jason Brownlee - Machine Learning Mastery
- Virtualitics ... Get more from your data and your team with AI-powered data exploration ... from Descriptive to Prescriptive
- Artificial General Intelligence (AGI) to Singularity ... Curious Reasoning ... Emergence ... Moonshots ... Explainable AI ... Automated Learning
- (Deep) Convolutional Neural Network (DCNN/CNN)
- Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. Visualization for Deep Learning workshop | Nguyen A, Yosinski J, Clune J, 2016
- Identifying core functional networks and functional modules within artificial neural networks via subsets regression | Velez R, Clune J, 2016
- Feature Engineering and Selection: A Practical Approach for Predictive Models - 4 Exploratory Visualizations | Max Kuhn and Kjell Johnson
Visualization with Python
Shan Carter