Difference between revisions of "Lasso Regression"
m |
|||
| (6 intermediate revisions by the same user not shown) | |||
| Line 2: | Line 2: | ||
|title=PRIMO.ai | |title=PRIMO.ai | ||
|titlemode=append | |titlemode=append | ||
| − | |keywords=artificial, intelligence, machine, learning, models | + | |keywords=ChatGPT, artificial, intelligence, machine, learning, GPT-4, GPT-5, NLP, NLG, NLC, NLU, models, data, singularity, moonshot, Sentience, AGI, Emergence, Moonshot, Explainable, TensorFlow, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Hugging Face, OpenAI, Tensorflow, OpenAI, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Meta, LLM, metaverse, assistants, agents, digital twin, IoT, Transhumanism, Immersive Reality, Generative AI, Conversational AI, Perplexity, Bing, You, Bard, Ernie, prompt Engineering LangChain, Video/Image, Vision, End-to-End Speech, Synthesize Speech, Speech Recognition, Stanford, MIT |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools |
| − | |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools | + | |
| + | <!-- Google tag (gtag.js) --> | ||
| + | <script async src="https://www.googletagmanager.com/gtag/js?id=G-4GCWLBVJ7T"></script> | ||
| + | <script> | ||
| + | window.dataLayer = window.dataLayer || []; | ||
| + | function gtag(){dataLayer.push(arguments);} | ||
| + | gtag('js', new Date()); | ||
| + | |||
| + | gtag('config', 'G-4GCWLBVJ7T'); | ||
| + | </script> | ||
}} | }} | ||
| − | [ | + | [https://www.youtube.com/results?search_query=Lasso+Regression+artificial+intelligence YouTube search...] |
| − | [ | + | [https://www.google.com/search?q=Lasso+Regression+machine+learning+ML ...Google search] |
| − | * [[AI Solver]] | + | * [[AI Solver]] ... [[Algorithms]] ... [[Algorithm Administration|Administration]] ... [[Model Search]] ... [[Discriminative vs. Generative]] ... [[Train, Validate, and Test]] |
** [[...predict values]] | ** [[...predict values]] | ||
| − | * [[ | + | * [[Regression]] Analysis |
| − | |||
* [[Regularization]] | * [[Regularization]] | ||
** [[Ridge Regression]] | ** [[Ridge Regression]] | ||
| − | *** [ | + | *** [https://towardsdatascience.com/ridge-and-lasso-regression-a-complete-guide-with-python-scikit-learn-e20e34bcbf0b Ridge and Lasso Regression: A Complete Guide with Python Scikit-Learn | Saptashwa - Towards Data Science] |
** [[Elastic Net Regression]] | ** [[Elastic Net Regression]] | ||
| − | * [[ | + | * [[Math for Intelligence]] ... [[Finding Paul Revere]] ... [[Social Network Analysis (SNA)]] ... [[Dot Product]] ... [[Kernel Trick]] |
| − | |||
* [[Overfitting Challenge]] | * [[Overfitting Challenge]] | ||
| − | a type of linear regression that uses shrinkage. Shrinkage is where data values are shrunk towards a central point, like the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters) [ | + | a type of linear regression that uses shrinkage. Shrinkage is where data values are shrunk towards a central point, like the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters) [https://www.statisticshowto.datasciencecentral.com/lasso-regression/ Lasso Regression: Simple Definition | Statistics How To] |
| − | + | https://miro.medium.com/max/700/1*Jd03Hyt2bpEv1r7UijLlpg.png | |
<youtube>NGf0voTMlcs</youtube> | <youtube>NGf0voTMlcs</youtube> | ||
<youtube>jbwSCwoT51M</youtube> | <youtube>jbwSCwoT51M</youtube> | ||
Latest revision as of 22:01, 5 March 2024
YouTube search... ...Google search
- AI Solver ... Algorithms ... Administration ... Model Search ... Discriminative vs. Generative ... Train, Validate, and Test
- Regression Analysis
- Regularization
- Math for Intelligence ... Finding Paul Revere ... Social Network Analysis (SNA) ... Dot Product ... Kernel Trick
- Overfitting Challenge
a type of linear regression that uses shrinkage. Shrinkage is where data values are shrunk towards a central point, like the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters) Lasso Regression: Simple Definition | Statistics How To