# Other Challenges

YouTube search... ...Google search

- Privacy in Data Science
- Backpropagation
- Gradient Descent Optimization & Challenges
- AI Verification and Validation
- Digital Twin
- Occlusions
- Bio-inspired Computing
- Energy Consumption
- Ethics Standards

## The Wall - Deep Learning

Deep neural nets are huge and bulky inefficient creatures that allow you to effectively solve a learning problem by getting huge amounts of data and a super computer. They currently trade efficiency for brute force almost every time.

Towards Theoretical Understanding of Deep Learning | Sanjeev Arora

- Non Convex Optimization: How can we understand the highly non-convex loss function associated with deep neural networks? Why does stochastic gradient descent even converge?
- Overparametrization and Generalization: In classical statistical theory, generalization depends on the number of parameters but not in deep learning. Why? Can we find another good measure of generalization?
- Role of Depth: How does depth help a neural network to converge? What is the link between depth and generalization?
- Generative Models: Why do Generative Adversarial Networks (GANs) work so well? What theoretical properties could we use to stabilize them or avoid mode collapse?

## The Expert