Difference between revisions of "Energy-based Model (EBN)"

From
Jump to: navigation, search
m
m
 
Line 19: Line 19:
 
* [[Energy]]
 
* [[Energy]]
 
* [[AI Solver]] ... [[Algorithms]] ... [[Algorithm Administration|Administration]] ... [[Model Search]] ... [[Discriminative vs. Generative]] ... [[Train, Validate, and Test]]
 
* [[AI Solver]] ... [[Algorithms]] ... [[Algorithm Administration|Administration]] ... [[Model Search]] ... [[Discriminative vs. Generative]] ... [[Train, Validate, and Test]]
* [[Immersive Reality]] ... [[Metaverse]] ... [[Digital Twin]] ... [[Internet of Things (IoT)]] ... [[Transhumanism]]
+
* [[Immersive Reality]] ... [[Metaverse]] ... [[Omniverse]] ... [[Transhumanism]] ... [[Religion]]
 +
* [[Telecommunications]] ... [[Computer Networks]] ... [[Telecommunications#5G|5G]] ... [[Satellite#Satellite Communications|Satellite Communications]] ... [[Quantum Communications]] ... [[Agents#Communication | Communication Agents]] ... [[Smart Cities]] ...  [[Digital Twin]] ... [[Internet of Things (IoT)]]  
  
 
Energy-Based Models (EBMs) discover data dependencies by applying a measure of compatibility (scalar energy) to each configuration of the variables. For a model to make a prediction or decision (inference) it needs to set the value of observed variables to 1 and finding values of the remaining variables that minimize that “energy” level.
 
Energy-Based Models (EBMs) discover data dependencies by applying a measure of compatibility (scalar energy) to each configuration of the variables. For a model to make a prediction or decision (inference) it needs to set the value of observed variables to 1 and finding values of the remaining variables that minimize that “energy” level.

Latest revision as of 20:37, 19 March 2024

YouTube search... ...Google search

Energy-Based Models (EBMs) discover data dependencies by applying a measure of compatibility (scalar energy) to each configuration of the variables. For a model to make a prediction or decision (inference) it needs to set the value of observed variables to 1 and finding values of the remaining variables that minimize that “energy” level.

EBMs are also known as non-normalized probabilistic models, specify probability density or mass functions up to an unknown normalizing constant. Unlike most other probabilistic models, EBMs do not place a restriction on the tractability of the normalizing constant, thus are more flexible.