Difference between revisions of "Generative Tensorial Reinforcement Learning (GENTRL)"

From
Jump to: navigation, search
m
m (Text replacement - "http:" to "https:")
Line 5: Line 5:
 
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
 
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
 
}}
 
}}
[http://www.youtube.com/results?search_query=Variational+Autoencoders YouTube search...]
+
[https://www.youtube.com/results?search_query=Variational+Autoencoders YouTube search...]
[http://www.google.com/search?q=Variational+Autoencoders+machine+learning+ML+artificial+intelligence ...Google search]
+
[https://www.google.com/search?q=Variational+Autoencoders+machine+learning+ML+artificial+intelligence ...Google search]
  
* [http://www.nature.com/articles/s41587-019-0224-x#MOESM3 Deep learning enables rapid identification of potent DDR1 kinase inhibitors | A. Zhavoronkov, Y. Ivanenkov, A. Aliper, M. Veselov, V. Aladinskiy, A. Aladinskaya, V. Terentiev, D. Polykovskiy, M. Kuznetsov, A. Asadulaev, Y. Volkov, A. Zholus, R. Shayakhmetov, A. Zhebrak, L. Minaeva, B. Zagribelnyy, L. Lee, R. Soll, D. Madge, L. Xing, T. Guo & A. Aspuru-Guzik - Nature  Biotechnology]  
+
* [https://www.nature.com/articles/s41587-019-0224-x#MOESM3 Deep learning enables rapid identification of potent DDR1 kinase inhibitors | A. Zhavoronkov, Y. Ivanenkov, A. Aliper, M. Veselov, V. Aladinskiy, A. Aladinskaya, V. Terentiev, D. Polykovskiy, M. Kuznetsov, A. Asadulaev, Y. Volkov, A. Zholus, R. Shayakhmetov, A. Zhebrak, L. Minaeva, B. Zagribelnyy, L. Lee, R. Soll, D. Madge, L. Xing, T. Guo & A. Aspuru-Guzik - Nature  Biotechnology]  
** [http://github.com/insilicomedicine/gentrl GENTRL | GitHub]
+
** [https://github.com/insilicomedicine/gentrl GENTRL | GitHub]
** [http://www.nature.com/articles/s41587-019-0224-x#MOESM1 Supplementary Code]
+
** [https://www.nature.com/articles/s41587-019-0224-x#MOESM1 Supplementary Code]
** [http://www.cxotalk.com/episode/ai-medicine-life-sciences-drug-discovery AI in Medicine: Life Sciences and Drug Discovery - Transcript | Alex Zhavoronkov & Michael Krigsman]
+
** [https://www.cxotalk.com/episode/ai-medicine-life-sciences-drug-discovery AI in Medicine: Life Sciences and Drug Discovery - Transcript | Alex Zhavoronkov & Michael Krigsman]
** [http://singularityhub.com/2019/09/09/how-an-ai-startup-designed-a-drug-candidate-in-just-46-days/ How an AI Startup Designed a Drug Candidate in Just 46 Days | Edd Gent - SingularityHub]
+
** [https://singularityhub.com/2019/09/09/how-an-ai-startup-designed-a-drug-candidate-in-just-46-days/ How an AI Startup Designed a Drug Candidate in Just 46 Days | Edd Gent - SingularityHub]
 
* [[Variational Autoencoder (VAE)]]
 
* [[Variational Autoencoder (VAE)]]
 
* [[Generative Adversarial Network (GAN)]]
 
* [[Generative Adversarial Network (GAN)]]
Line 22: Line 22:
  
  
<img src="http://github.com/insilicomedicine/GENTRL/raw/master/images/gentrl.png" alt="GENTRL" width="800" height="800">
+
<img src="https://github.com/insilicomedicine/GENTRL/raw/master/images/gentrl.png" alt="GENTRL" width="800" height="800">
  
 
<youtube>-_pHs2PLq1o</youtube>
 
<youtube>-_pHs2PLq1o</youtube>
Line 31: Line 31:
 
<youtube>kpfB_I6QZ1w</youtube>
 
<youtube>kpfB_I6QZ1w</youtube>
  
http://icdn9.digitaltrends.com/image/digitaltrends/gan-chemistry-gan-timeline-original-1200x9999.jpg
+
https://icdn9.digitaltrends.com/image/digitaltrends/gan-chemistry-gan-timeline-original-1200x9999.jpg

Revision as of 14:51, 28 March 2023

YouTube search... ...Google search


A deep generative model, generative tensorial reinforcement learning (GENTRL). The GENTRL model is a Variational Autoencoder (VAE) with a rich prior distribution of the latent space. We used tensor decompositions to encode the relations between molecular structures and their properties and to learn on data with missing values. We train the model in two steps. First, we learn a mapping of a chemical space on the latent manifold by maximizing the evidence lower bound. We then freeze all the parameters except for the learnable prior and explore the chemical space to find molecules with a high reward.


GENTRL

gan-chemistry-gan-timeline-original-1200x9999.jpg