Difference between revisions of "Text Transfer Learning"

From
Jump to: navigation, search
m
 
(30 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
{{#seo:
 +
|title=PRIMO.ai
 +
|titlemode=append
 +
|keywords=ChatGPT, artificial, intelligence, machine, learning, GPT-4, GPT-5, NLP, NLG, NLC, NLU, models, data, singularity, moonshot, Sentience, AGI, Emergence, Moonshot, Explainable, TensorFlow, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Hugging Face, OpenAI, Tensorflow, OpenAI, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Meta, LLM, metaverse, assistants, agents, digital twin, IoT, Transhumanism, Immersive Reality, Generative AI, Conversational AI, Perplexity, Bing, You, Bard, Ernie, prompt Engineering LangChain, Video/Image, Vision, End-to-End Speech, Synthesize Speech, Speech Recognition, Stanford, MIT |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools 
 +
 +
<!-- Google tag (gtag.js) -->
 +
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4GCWLBVJ7T"></script>
 +
<script>
 +
  window.dataLayer = window.dataLayer || [];
 +
  function gtag(){dataLayer.push(arguments);}
 +
  gtag('js', new Date());
 +
 +
  gtag('config', 'G-4GCWLBVJ7T');
 +
</script>
 +
}}
 
[http://www.youtube.com/results?search_query=Text+document+speech+words+Transfer+Learning+machine+neural+network YouTube search...]
 
[http://www.youtube.com/results?search_query=Text+document+speech+words+Transfer+Learning+machine+neural+network YouTube search...]
 +
[http://www.google.com/search?q=Text+document+speech+words+Transfer+Learning+machine+neural+network ...Google search]
  
 +
* [[Learning Techniques]]
 +
* [[Video/Image]] ... [[Vision]] ... [[Enhancement]] ... [[Fake]] ... [[Reconstruction]] ... [[Colorize]] ... [[Occlusions]] ... [[Predict image]] ... [[Image/Video Transfer Learning]]
 +
* [[Perspective]] ... [[Context]] ... [[In-Context Learning (ICL)]] ... [[Transfer Learning]] ... [[Out-of-Distribution (OOD) Generalization]]
 +
* [[Causation vs. Correlation]] ... [[Autocorrelation]] ...[[Convolution vs. Cross-Correlation (Autocorrelation)]]
 +
* [[Large Language Model (LLM)]] ... [[Natural Language Processing (NLP)]]  ...[[Natural Language Generation (NLG)|Generation]] ... [[Natural Language Classification (NLC)|Classification]] ...  [[Natural Language Processing (NLP)#Natural Language Understanding (NLU)|Understanding]] ... [[Language Translation|Translation]] ... [[Natural Language Tools & Services|Tools & Services]]
 +
* [http://venturebeat.com/2019/10/24/google-achieves-state-of-the-art-nlp-performance-with-an-enormous-language-model-and-data-set/ Google achieves state-of-the-art NLP performance with an enormous language model and data set | Kyle Wiggers - Venture Beat] researchers at Google developed a new data set — Colossal Clean Crawled Corpus — and a unified framework and model dubbed [http://arxiv.org/pdf/1910.10683.pdf Text-to-Text Transformer] that converts language problems into a text-to-text format. Colossal Clean Crawled Corpus — were sourced from the Common Crawl project, which scrapes roughly 20 terabytes of English text from the web each month.
 +
* [[Attention]] Mechanism  ... [[Transformer]] ... [[Generative Pre-trained Transformer (GPT)]] ... [[Generative Adversarial Network (GAN)|GAN]] ... [[Bidirectional Encoder Representations from Transformers (BERT)|BERT]]
 +
* [[What is Artificial Intelligence (AI)? | Artificial Intelligence (AI)]] ... [[Generative AI]] ... [[Machine Learning (ML)]] ... [[Deep Learning]] ... [[Neural Network]] ... [[Reinforcement Learning (RL)|Reinforcement]] ... [[Learning Techniques]]
 +
* [[Conversational AI]] ... [[ChatGPT]] | [[OpenAI]] ... [[Bing/Copilot]] | [[Microsoft]] ... [[Gemini]] | [[Google]] ... [[Claude]] | [[Anthropic]] ... [[Perplexity]] ... [[You]] ... [[phind]] ... [[Ernie]] | [[Baidu]]
 
* [http://pdfs.semanticscholar.org/1bb2/39731589f3114a3fe5b35e42a635b5eacb38.pdf  Transfer Learning for Text Mining | Weike Pan, Erheng Zhong, and Qiang Yang]  
 
* [http://pdfs.semanticscholar.org/1bb2/39731589f3114a3fe5b35e42a635b5eacb38.pdf  Transfer Learning for Text Mining | Weike Pan, Erheng Zhong, and Qiang Yang]  
  
Transfer algorithms: Bi-Directional Attention Flow (BIDAF), Document-QA (DOCQA), Reasoning Network (ReasoNet), R-NET, S-NET, and Assertion Based Question Answering (ABQA)
+
Transfer algorithms: Bi-Directional Attention Flow (BIDAF), Document-QA (DOCQA), Reasoning Network (ReasoNet), R-NET, S-NET, and Assertion Based Question Answering (ABQA) [http://blogs.technet.microsoft.com/machinelearning/2018/04/25/transfer-learning-for-text-using-deep-learning-virtual-machine-dlvm/ Transfer Learning for Text using Deep Learning Virtual Machine (DLVM) | Anusua Trivedi and Wee Hyong Tok - Microsoft]
 +
 
  
* [http://blogs.technet.microsoft.com/machinelearning/2018/04/25/transfer-learning-for-text-using-deep-learning-virtual-machine-dlvm/ Transfer Learning for Text using Deep Learning Virtual Machine (DLVM) | Anusua Trivedi and Wee Hyong Tok - Microsoft]
+
<youtube>zxJJ0T54HX8</youtube>
http://msdnshared.blob.core.windows.net/media/2018/04/042518_1628_TransferLea1.png
+
<youtube>qN9hHlZKIL4</youtube>

Latest revision as of 15:35, 28 April 2024

YouTube search... ...Google search

Transfer algorithms: Bi-Directional Attention Flow (BIDAF), Document-QA (DOCQA), Reasoning Network (ReasoNet), R-NET, S-NET, and Assertion Based Question Answering (ABQA) Transfer Learning for Text using Deep Learning Virtual Machine (DLVM) | Anusua Trivedi and Wee Hyong Tok - Microsoft