Difference between revisions of "Constitutional AI"

From
Jump to: navigation, search
m
m
 
(One intermediate revision by the same user not shown)
Line 22: Line 22:
 
* [[Policy]] ... [[Policy vs Plan]] ... [[Constitutional AI]] ... [[Trust Region Policy Optimization (TRPO)]] ... [[Policy Gradient (PG)]] ... [[Proximal Policy Optimization (PPO)]]
 
* [[Policy]] ... [[Policy vs Plan]] ... [[Constitutional AI]] ... [[Trust Region Policy Optimization (TRPO)]] ... [[Policy Gradient (PG)]] ... [[Proximal Policy Optimization (PPO)]]
 
* [[What is Artificial Intelligence (AI)? | Artificial Intelligence (AI)]] ... [[Machine Learning (ML)]] ... [[Deep Learning]] ... [[Neural Network]] ... [[Reinforcement Learning (RL)|Reinforcement]] ... [[Learning Techniques]]
 
* [[What is Artificial Intelligence (AI)? | Artificial Intelligence (AI)]] ... [[Machine Learning (ML)]] ... [[Deep Learning]] ... [[Neural Network]] ... [[Reinforcement Learning (RL)|Reinforcement]] ... [[Learning Techniques]]
* [[Assistants]] ... [[Personal Companions]] ... [[Agents]] ... [[Negotiation]] ... [[LangChain]]
+
* [[Agents]] ... [[Robotic Process Automation (RPA)|Robotic Process Automation]] ... [[Assistants]] ... [[Personal Companions]] ... [[Personal Productivity|Productivity]] ... [[Email]] ... [[Negotiation]] ... [[LangChain]]
 
* [[What is Artificial Intelligence (AI)? | Artificial Intelligence (AI)]] ... [[Generative AI]] ... [[Machine Learning (ML)]] ... [[Deep Learning]] ... [[Neural Network]] ... [[Reinforcement Learning (RL)|Reinforcement]] ... [[Learning Techniques]]
 
* [[What is Artificial Intelligence (AI)? | Artificial Intelligence (AI)]] ... [[Generative AI]] ... [[Machine Learning (ML)]] ... [[Deep Learning]] ... [[Neural Network]] ... [[Reinforcement Learning (RL)|Reinforcement]] ... [[Learning Techniques]]
* [[Conversational AI]] ... [[ChatGPT]] | [[OpenAI]] ... [[Bing]] | [[Microsoft]] ... [[Bard]] | [[Google]] ... [[Claude]] | [[Anthropic]] ... [[Perplexity]] ... [[You]] ... [[Ernie]] | [[Baidu]]
+
* [[Conversational AI]] ... [[ChatGPT]] | [[OpenAI]] ... [[Bing/Copilot]] | [[Microsoft]] ... [[Gemini]] | [[Google]] ... [[Claude]] | [[Anthropic]] ... [[Perplexity]] ... [[You]] ... [[phind]] ... [[Ernie]] | [[Baidu]]
 
* [[Claude]] | [https://www.anthropic.com/ Anthropic]
 
* [[Claude]] | [https://www.anthropic.com/ Anthropic]
 
* [[Reinforcement Learning (RL) from Human Feedback (RLHF)]]
 
* [[Reinforcement Learning (RL) from Human Feedback (RLHF)]]

Latest revision as of 08:55, 23 March 2024

YouTube ... Quora ...Google search ...Google News ...Bing News

Constitutional AI is a method for training AI systems using a set of rules or principles that act as a “constitution” for the AI system. This approach allows the AI system to operate within a societally accepted framework and aligns it with human intentions. Some benefits of using Constitutional AI include allowing a model to explain why it is refusing to provide an answer, improving transparency of AI decision making, and controlling AI behavior more precisely with fewer human labels.

  • Constitutional AI is a technique that aims to imbue systems with “values” defined by a “constitution”³.
  • This makes the behavior of systems both easier to understand and simpler to adjust as needed³.
  • The system uses a set of principles to make judgments about outputs, hence the term “Constitutional”⁴.
  • This approach makes the values of the AI system easier to understand and easier to adjust as needed⁴.



RL from AI Feedback' (RLAIF)

It is a process that involves training a preference model from a dataset of AI preferences and then using that preference model as the reward signal for training with reinforcement learning. RLAIF is a method for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so the method is referred to as ‘Constitutional AI’. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase, an initial model is sampled from, then self-critiques and revisions are generated, and then the original model is finetuned on revised responses. In the RL phase, samples are taken from the finetuned model and a model is used to evaluate which of the two samples is better. A preference model is then trained from this dataset of AI preferences. The preference model is used as the reward signal for training with RL.