Difference between revisions of "Latent Dirichlet Allocation (LDA)"

From
Jump to: navigation, search
m (Text replacement - "* Conversational AI ... ChatGPT | OpenAI ... Bing | Microsoft ... Bard | Google ... Claude | Anthropic ... Perplexity ... You ... Ernie | Baidu" to "* Conversational AI ... [[C...)
m
Line 16: Line 16:
 
* [[Term Frequency–Inverse Document Frequency (TF-IDF)]]
 
* [[Term Frequency–Inverse Document Frequency (TF-IDF)]]
 
* [[Probabilistic Latent Semantic Analysis (PLSA)]]
 
* [[Probabilistic Latent Semantic Analysis (PLSA)]]
* [[Generative AI]] ... [[Conversational AI]] ... [[ChatGPT]] | [[OpenAI]] ... [[Bing]] | [[Microsoft]] ... [[Bard]] | [[Google]] ... [[Claude]] | [[Anthropic]] ... [[Perplexity]] ... [[You]] ... [[Ernie]] | [[Baidu]]
+
* [[Conversational AI]] ... [[ChatGPT]] | [[OpenAI]] ... [[Bing/Copilot]] | [[Microsoft]] ... [[Gemini]] | [[Google]] ... [[Claude]] | [[Anthropic]] ... [[Perplexity]] ... [[You]] ... [[phind]] ... [[Ernie]] | [[Baidu]]
  
  

Revision as of 14:15, 16 March 2024

Youtube search... ...Google search


In Natural Language Processing (NLP), Latent Dirichlet Allocation (LDA) is a generative statistical model that allows sets of observations to be explained by unobserved groups that explain why some parts of the data are similar. For example, if observations are words collected into documents, it posits that each document is a mixture of a small number of topics and that each word's presence is attributable to one of the document's topics. LDA is an example of Topic Model/Mapping.