Difference between revisions of "Transformer-XL"

From
Jump to: navigation, search
Line 10: Line 10:
  
  
combines the two leading architectures for language modeling — [1] [[Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Network (RNN)]] to handles the input tokens — words or characters — one by one to learn the relationship between them, and [2] [[Attention Mechanism/Model - Transformer Model]] to receive a segment of tokens and learns the dependencies between at once them using an attention mechanism. [http://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924 Transformer-XL Explained: Combining Transformers and RNNs into a State-of-the-art Language Model; Summary of “Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context” | Rani Horev - Towards Data Science]
+
combines the two leading architectures for language modeling:
 +
#1 [[Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Network (RNN)]] to handles the input tokens — words or characters — one by one to learn the relationship between them
 +
#2 [[Attention Mechanism/Model - Transformer Model]] to receive a segment of tokens and learns the dependencies between at once them using an attention mechanism. [http://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924 Transformer-XL Explained: Combining Transformers and RNNs into a State-of-the-art Language Model; Summary of “Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context” | Rani Horev - Towards Data Science]
  
  

Revision as of 16:12, 19 January 2019