Difference between revisions of "Deep Reinforcement Learning (DRL)"

From
Jump to: navigation, search
m
Line 6: Line 6:
  
 
<youtube>Vz5l886eptw</youtube>
 
<youtube>Vz5l886eptw</youtube>
<youtube>79pmNdyxEGo</youtube>
 
<youtube>A5eihauRQvo</youtube>
 
<youtube>aCEvtRtNO-M</youtube>
 
 
<youtube>lvoHnicueoE</youtube>
 
<youtube>lvoHnicueoE</youtube>
 
<youtube>MQ6pP65o7OM</youtube>
 
<youtube>MQ6pP65o7OM</youtube>
 
<youtube>mckulxKWyoc</youtube>
 
<youtube>mckulxKWyoc</youtube>
 +
<youtube>e3Jy2vShroE</youtube>
 
<youtube>313kbpBq8Sg</youtube>
 
<youtube>313kbpBq8Sg</youtube>
 +
 +
== Q Learning ==
 +
[http://www.youtube.com/results?search_query=deep+reinforcement+q+learning+artificial+intelligence+ Youtube search...]
 +
 +
<youtube>79pmNdyxEGo</youtube>
 +
<youtube>A5eihauRQvo</youtube>
 +
<youtube>aCEvtRtNO-M</youtube>
 +
<youtube>nSxaG_Kjw_w</youtube>
 +
<youtube>V1eYniJ0Rnk</youtube>
 +
<youtube>1XRahNzA5bE</youtube>

Revision as of 05:32, 18 May 2018

Youtube search...

Goal-oriented algorithms, which learn how to attain a complex objective (goal) or maximize along a particular dimension over many steps; for example, maximize the points won in a game over many moves. Reinforcement learning solves the difficult problem of correlating immediate actions with the delayed returns they produce. Like humans, reinforcement learning algorithms sometimes have to wait a while to see the fruit of their decisions. They operate in a delayed return environment, where it can be difficult to understand which action leads to which outcome over many time steps.

Q Learning

Youtube search...