Difference between revisions of "Markov Decision Process (MDP)"

From
Jump to: navigation, search
m
m
 
Line 21: Line 21:
 
* [[Reinforcement Learning (RL)]]
 
* [[Reinforcement Learning (RL)]]
 
** [[Monte Carlo]] (MC) Method - Model Free Reinforcement Learning
 
** [[Monte Carlo]] (MC) Method - Model Free Reinforcement Learning
** Markov Decision Process (MDP)
+
** [[Markov Decision Process (MDP)]]
 
** [[State-Action-Reward-State-Action (SARSA)]]
 
** [[State-Action-Reward-State-Action (SARSA)]]
 
** [[Q Learning]]
 
** [[Q Learning]]

Latest revision as of 20:27, 13 July 2023

Youtube search... ...Google search


1*mUyxMUpzQWX4GNTd7TT4nA.gif

600px-Markov_Decision_Process.svg.png

Solutions:

Used where outcomes are partly random and partly under the control of a decision maker. MDP is a discrete time stochastic control process. At each time step, the process is in some state s, and the decision maker may choose any action a that is available in state s. The process responds at the next time step by randomly moving into a new state s', and giving the decision maker a corresponding reward R_{a}(s,s')} R_a(s,s'). The probability that the process moves into its new state s' is influenced by the chosen action. Helping the convergence of certain algorithms a discount rate (factor) makes an infinite sum finite.



(Richard) Bellman Equation

1*5PGCR0jwd15kLhRCA09R1w.gif