Difference between revisions of "Deep Q Network (DQN)"

From
Jump to: navigation, search
Line 14: Line 14:
 
* [[Gaming]]
 
* [[Gaming]]
  
Deep Q learning, as published in ([http://arxiv.org/abs/1312.5602 Playing Atari with Deep Reinforcement Learning | Mnih et al, 2013]), leverages advances in deep learning to learn policies from high dimensional sensory input. [http://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb Vanilla Deep Q Networks: Deep Q Learning Explained | Chris Yoon - Towards Data Science]
+
Deep Q learning (DQN), as published in [http://arxiv.org/abs/1312.5602 Playing Atari with Deep Reinforcement Learning | Mnih et al, 2013], leverages advances in deep learning to learn policies from high dimensional sensory input. A convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. [http://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb Vanilla Deep Q Networks: Deep Q Learning Explained | Chris Yoon - Towards Data Science]
  
 
Training deep neural networks to show that a novel end-to-end reinforcement learning agent, termed a deep Q-network (DQN) [http://deepmind.com/research/dqn/ Human-level control through Deep Reinforcement Learning | Deepmind]
 
Training deep neural networks to show that a novel end-to-end reinforcement learning agent, termed a deep Q-network (DQN) [http://deepmind.com/research/dqn/ Human-level control through Deep Reinforcement Learning | Deepmind]

Revision as of 12:31, 1 September 2019

Youtube search... ...Google search

Deep Q learning (DQN), as published in Playing Atari with Deep Reinforcement Learning | Mnih et al, 2013, leverages advances in deep learning to learn policies from high dimensional sensory input. A convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. Vanilla Deep Q Networks: Deep Q Learning Explained | Chris Yoon - Towards Data Science

Training deep neural networks to show that a novel end-to-end reinforcement learning agent, termed a deep Q-network (DQN) Human-level control through Deep Reinforcement Learning | Deepmind