Difference between revisions of "Hierarchical Cluster Analysis (HCA)"
| Line 22: | Line 22: | ||
http://www.sthda.com/english/sthda-upload/figures/principal-component-methods/011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png | http://www.sthda.com/english/sthda-upload/figures/principal-component-methods/011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png | ||
| + | <youtube>EQZaSuK-PHs</youtube> | ||
| + | <youtube>JcfIeaGzF8A</youtube> | ||
| + | <youtube>7BPLNOMNIXM</youtube> | ||
| + | <youtube>EUQY3hL38cw</youtube> | ||
<youtube>bMH-aHNlhBA</youtube> | <youtube>bMH-aHNlhBA</youtube> | ||
<youtube>rg2cjfMsCk4</youtube> | <youtube>rg2cjfMsCk4</youtube> | ||
Revision as of 19:30, 22 April 2019
YouTube search... ...Google search
- Hierarchical Clustering; Agglomerative (HAC) & Divisive (HDC)
- Hierarchical Temporal Memory (HTM)
- Capabilities
- ...find outliers
- Identify clusters (items) with closest distance
- Join them to new clusters
- Compute distance between clusters (items)
- Return to step 1
The HCPC (Hierarchical Clustering on Principal Components) approach allows us to combine the three standard methods used in multivariate data analyses (Husson, Josse, and J. 2010):