Difference between revisions of "Hierarchical Cluster Analysis (HCA)"

From
Jump to: navigation, search
Line 22: Line 22:
 
http://www.sthda.com/english/sthda-upload/figures/principal-component-methods/011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png
 
http://www.sthda.com/english/sthda-upload/figures/principal-component-methods/011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png
  
 +
<youtube>EQZaSuK-PHs</youtube>
 +
<youtube>JcfIeaGzF8A</youtube>
 +
<youtube>7BPLNOMNIXM</youtube>
 +
<youtube>EUQY3hL38cw</youtube>
 
<youtube>bMH-aHNlhBA</youtube>
 
<youtube>bMH-aHNlhBA</youtube>
 
<youtube>rg2cjfMsCk4</youtube>
 
<youtube>rg2cjfMsCk4</youtube>

Revision as of 19:30, 22 April 2019

YouTube search... ...Google search

  1. Identify clusters (items) with closest distance
  2. Join them to new clusters
  3. Compute distance between clusters (items)
  4. Return to step 1

The HCPC (Hierarchical Clustering on Principal Components) approach allows us to combine the three standard methods used in multivariate data analyses (Husson, Josse, and J. 2010):

011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png