Difference between revisions of "TensorFlow"

From
Jump to: navigation, search
m
m
 
(4 intermediate revisions by the same user not shown)
Line 20: Line 20:
 
[https://www.bing.com/news/search?q=TensorFlow&qft=interval%3d%228%22 ...Bing News]
 
[https://www.bing.com/news/search?q=TensorFlow&qft=interval%3d%228%22 ...Bing News]
  
* [[Python]] ... [[Generative AI with Python|GenAI w/ Python]] ... [[Javascript]] ... [[Generative AI with Javascript|GenAI w/ Javascript]] ... [[TensorFlow]] ... [[PyTorch]]
+
* [[Python]] ... [[Generative AI with Python|GenAI w/ Python]] ... [[JavaScript]] ... [[Generative AI with JavaScript|GenAI w/ JavaScript]] ... [[TensorFlow]] ... [[PyTorch]]  
 
* [[Google]] offerings
 
* [[Google]] offerings
 
* [[Libraries & Frameworks Overview]] ... [[Libraries & Frameworks]] ... [[Git - GitHub and GitLab]] ... [[Other Coding options]]
 
* [[Libraries & Frameworks Overview]] ... [[Libraries & Frameworks]] ... [[Git - GitHub and GitLab]] ... [[Other Coding options]]
Line 26: Line 26:
 
* [[Keras]] (currently part of TensorFlow 2.0)
 
* [[Keras]] (currently part of TensorFlow 2.0)
 
* [[Analytics]] ... [[Visualization]] ... [[Graphical Tools for Modeling AI Components|Graphical Tools]] ... [[Diagrams for Business Analysis|Diagrams]] & [[Generative AI for Business Analysis|Business Analysis]] ... [[Requirements Management|Requirements]] ... [[Loop]] ... [[Bayes]] ... [[Network Pattern]]
 
* [[Analytics]] ... [[Visualization]] ... [[Graphical Tools for Modeling AI Components|Graphical Tools]] ... [[Diagrams for Business Analysis|Diagrams]] & [[Generative AI for Business Analysis|Business Analysis]] ... [[Requirements Management|Requirements]] ... [[Loop]] ... [[Bayes]] ... [[Network Pattern]]
* [[Development]] ... [[Notebooks]] ... [[Development#AI Pair Programming Tools|AI Pair Programming]] ... [[Codeless Options, Code Generators, Drag n' Drop|Codeless, Generators, Drag n' Drop]] ... [[Algorithm Administration#AIOps/MLOps|AIOps/MLOps]] ... [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)|AIaaS/MLaaS]]
+
* [[Development]] ... [[Notebooks]] ... [[Development#AI Pair Programming Tools|AI Pair Programming]] ... [[Codeless Options, Code Generators, Drag n' Drop|Codeless]] ... [[Hugging Face]] ... [[Algorithm Administration#AIOps/MLOps|AIOps/MLOps]] ... [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)|AIaaS/MLaaS]]
* [[Gaming]] ... [[Game-Based Learning (GBL)]] ... [[Games - Security|Security]] ... [[Game Development with Generative AI|Generative AI]] ... [[Metaverse#Games - Metaverse|Metaverse]] ... [[Games - Quantum Theme|Quantum]] ... [[Game Theory]]
+
* [[Gaming]] ... [[Game-Based Learning (GBL)]] ... [[Games - Security|Security]] ... [[Game Development with Generative AI|Generative AI]] ... [[Metaverse#Games - Metaverse|Games - Metaverse]] ... [[Games - Quantum Theme|Quantum]] ... [[Game Theory]] ... [[Game Design | Design]]
 
* [http://venturebeat.com/2019/09/30/google-launches-tensorflow-2-0-with-tighter-keras-integration/ Google launches TensorFlow 2.0 with tighter Keras integration | Khari Johnson]
 
* [http://venturebeat.com/2019/09/30/google-launches-tensorflow-2-0-with-tighter-keras-integration/ Google launches TensorFlow 2.0 with tighter Keras integration | Khari Johnson]
 
* [[TensorFlow.js]]  ... Browser and Node Server
 
* [[TensorFlow.js]]  ... Browser and Node Server
Line 59: Line 59:
  
  
<img src="https://content.altexsoft.com/media/2017/08/tensors_flowing-1.gif" width="600">
+
<img src="https://content.altexsoft.com/media/2017/08/tensors_flowing-1.gif" width="400">
  
  

Latest revision as of 12:42, 6 November 2024

YouTube ... Quora ...Google search ...Google News ...Bing News



TensorFlow focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs, and flexible model building on any platform, tight Keras integration. You can easily ingest datasets via tf.data pipelines, and you can monitor your training in TensorBoard directly from Colaboratory and Jupyter Notebooks. TensorFlow 2.0 and Google Cloud AI make it easy to train, deploy, and maintain scalable machine learning models | Paige Bailey and Barrett Williams - Google

GPU

tf.function

Eager Execution (Default in 2.0) =

tf.data - TF Input Pipeline

tf.distribute

mesh-TensorFlow

TensorFlow Probability

Reinforcement Learning with TF-Agents

Examples


Tensorflow for Practice Specialization