Difference between revisions of "TensorFlow"

From
Jump to: navigation, search
m
m
Line 79: Line 79:
  
 
=== GPU ===
 
=== GPU ===
[http://www.youtube.com/results?search_query=GPU+tensorflow Youtube search...]
+
* [[Processing Units - CPU, GPU, APU, TPU, VPU, FPGA, QPU]]
 +
* [http://www.youtube.com/results?search_query=GPU+tensorflow Youtube search...]
  
 
<youtube>r7-WPbx8VuY</youtube>
 
<youtube>r7-WPbx8VuY</youtube>
Line 85: Line 86:
  
 
=== tf.function ===
 
=== tf.function ===
[http://www.youtube.com/results?search_query=tf.function+tensorflow Youtube search...]
+
* [http://www.youtube.com/results?search_query=tf.function+tensorflow Youtube search...]
  
 
<youtube>yH1cF7GnoIo</youtube>
 
<youtube>yH1cF7GnoIo</youtube>
Line 91: Line 92:
  
 
=== Eager Execution (Default in 2.0) ====
 
=== Eager Execution (Default in 2.0) ====
[http://www.youtube.com/results?search_query=eager+execution+tensorflow Youtube search...]
+
* [http://www.youtube.com/results?search_query=eager+execution+tensorflow Youtube search...]
  
 
* [http://towardsdatascience.com/the-roadmap-of-mathematics-for-deep-learning-357b3db8569b Eager Execution vs. Graph Execution in TensorFlow: Which is Better? | Orhan G. Yalcin] ...Comparing Eager Execution and Graph Execution using Code Examples, Understanding When to Use Each and why TensorFlow switched to Eager Execution | Deep Learning with TensorFlow 2.x
 
* [http://towardsdatascience.com/the-roadmap-of-mathematics-for-deep-learning-357b3db8569b Eager Execution vs. Graph Execution in TensorFlow: Which is Better? | Orhan G. Yalcin] ...Comparing Eager Execution and Graph Execution using Code Examples, Understanding When to Use Each and why TensorFlow switched to Eager Execution | Deep Learning with TensorFlow 2.x
Line 99: Line 100:
  
 
=== tf.data - TF Input Pipeline ===
 
=== tf.data - TF Input Pipeline ===
[http://www.youtube.com/results?search_query=tf.data+TF+Input+Pipeline+tensorflow Youtube search...]
+
* [http://www.youtube.com/results?search_query=tf.data+TF+Input+Pipeline+tensorflow Youtube search...]
  
 
<youtube>kVEOCfBy9uY</youtube>
 
<youtube>kVEOCfBy9uY</youtube>
Line 107: Line 108:
  
 
=== tf.distribute ===
 
=== tf.distribute ===
[http://www.youtube.com/results?search_query=tf.distribute+tensorflow Youtube search...]
+
* [http://www.youtube.com/results?search_query=tf.distribute+tensorflow Youtube search...]
  
 
<youtube>ZnukSLKEw34</youtube>
 
<youtube>ZnukSLKEw34</youtube>
Line 113: Line 114:
  
 
=== mesh-TensorFlow ===
 
=== mesh-TensorFlow ===
[http://www.youtube.com/results?search_query=mesh+tensorflow Youtube search...]
+
* [http://www.youtube.com/results?search_query=mesh+tensorflow Youtube search...]
  
 
<youtube>HgGyWS40g-g</youtube>
 
<youtube>HgGyWS40g-g</youtube>
Line 119: Line 120:
  
 
=== TensorFlow Probability ===
 
=== TensorFlow Probability ===
[http://www.youtube.com/results?search_query=Probability+tensorflow Youtube search...]
+
* [http://www.youtube.com/results?search_query=Probability+tensorflow Youtube search...]
  
 
<youtube>BrwKURU-wpk</youtube>
 
<youtube>BrwKURU-wpk</youtube>
Line 125: Line 126:
  
 
=== Reinforcement Learning with TF-Agents ===
 
=== Reinforcement Learning with TF-Agents ===
[http://www.youtube.com/results?search_query=TF-Agents+tensorflow Youtube search...]
+
* [http://www.youtube.com/results?search_query=TF-Agents+tensorflow Youtube search...]
  
 
<youtube>-TTziY7EmUA</youtube>
 
<youtube>-TTziY7EmUA</youtube>

Revision as of 07:43, 9 October 2023

YouTube ... Quora ...Google search ...Google News ...Bing News



TensorFlow focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs, and flexible model building on any platform, tight Keras integration. You can easily ingest datasets via tf.data pipelines, and you can monitor your training in TensorBoard directly from Colaboratory and Jupyter Notebooks. TensorFlow 2.0 and Google Cloud AI make it easy to train, deploy, and maintain scalable machine learning models | Paige Bailey and Barrett Williams - Google

GPU

tf.function

Eager Execution (Default in 2.0) =

tf.data - TF Input Pipeline

tf.distribute

mesh-TensorFlow

TensorFlow Probability

Reinforcement Learning with TF-Agents

Examples


Tensorflow for Practice Specialization