Difference between revisions of "Backpropagation"

From
Jump to: navigation, search
m (Text replacement - "http:" to "https:")
m
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
|title=PRIMO.ai
 
|title=PRIMO.ai
 
|titlemode=append
 
|titlemode=append
|keywords=artificial, intelligence, machine, learning, models, algorithms, data, singularity, moonshot, Tensorflow, Google, Nvidia, Microsoft, Azure, Amazon, AWS  
+
|keywords=ChatGPT, artificial, intelligence, machine, learning, GPT-4, GPT-5, NLP, NLG, NLC, NLU, models, data, singularity, moonshot, Sentience, AGI, Emergence, Moonshot, Explainable, TensorFlow, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Hugging Face, OpenAI, Tensorflow, OpenAI, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Meta, LLM, metaverse, assistants, agents, digital twin, IoT, Transhumanism, Immersive Reality, Generative AI, Conversational AI, Perplexity, Bing, You, Bard, Ernie, prompt Engineering LangChain, Video/Image, Vision, End-to-End Speech, Synthesize Speech, Speech Recognition, Stanford, MIT |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
+
 
 +
<!-- Google tag (gtag.js) -->
 +
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4GCWLBVJ7T"></script>
 +
<script>
 +
  window.dataLayer = window.dataLayer || [];
 +
  function gtag(){dataLayer.push(arguments);}
 +
  gtag('js', new Date());
 +
 
 +
  gtag('config', 'G-4GCWLBVJ7T');
 +
</script>
 
}}
 
}}
 
[https://www.youtube.com/results?search_query=backpropagation Youtube search...]
 
[https://www.youtube.com/results?search_query=backpropagation Youtube search...]
 
[https://www.google.com/search?q=Backpropagation+deep+machine+learning+ML ...Google search]
 
[https://www.google.com/search?q=Backpropagation+deep+machine+learning+ML ...Google search]
  
* [[Backpropagation]] ...[[Gradient Descent Optimization & Challenges]] ...[[Feed Forward Neural Network (FF or FFNN)]] ...[[Forward-Forward]]
+
* [[Backpropagation]] ... [[Feed Forward Neural Network (FF or FFNN)|FFNN]] ... [[Forward-Forward]] ... [[Activation Functions]] ...[[Softmax]] ... [[Loss]] ... [[Boosting]] ... [[Gradient Descent Optimization & Challenges|Gradient Descent]] ... [[Algorithm Administration#Hyperparameter|Hyperparameter]] ... [[Manifold Hypothesis]] ... [[Principal Component Analysis (PCA)|PCA]]
 
* [[Objective vs. Cost vs. Loss vs. Error Function]]
 
* [[Objective vs. Cost vs. Loss vs. Error Function]]
 +
* [[Optimization Methods]]
 
* [https://en.wikipedia.org/wiki/Backpropagation Wikipedia]
 
* [https://en.wikipedia.org/wiki/Backpropagation Wikipedia]
* [[Manifold Hypothesis]]
 
 
* [https://neuralnetworksanddeeplearning.com/chap2.html How the backpropagation algorithm works]
 
* [https://neuralnetworksanddeeplearning.com/chap2.html How the backpropagation algorithm works]
 
* [https://hmkcode.github.io/ai/backpropagation-step-by-step/ Backpropagation Step by Step]
 
* [https://hmkcode.github.io/ai/backpropagation-step-by-step/ Backpropagation Step by Step]

Latest revision as of 09:30, 6 August 2023

Youtube search... ...Google search


The primary algorithm for performing gradient descent on neural networks. First, the output values of each node are calculated (and cached) in a forward pass. Then, the partial derivative of the error with respect to each parameter is calculated in a backward pass through the graph. Machine Learning Glossary | Google


backpropagation.png