Difference between revisions of "Lifelong Latent Actor-Critic (LILAC)"

From
Jump to: navigation, search
m (Text replacement - "http:" to "https:")
m
Line 23: Line 23:
 
*** Lifelong Latent Actor-Critic (LILAC)
 
*** Lifelong Latent Actor-Critic (LILAC)
 
** [[Hierarchical Reinforcement Learning (HRL)]]
 
** [[Hierarchical Reinforcement Learning (HRL)]]
 
+
* [[Policy]]  ... [[Policy vs Plan]] ... [[Constitutional AI]] ... [[Trust Region Policy Optimization (TRPO)]] ... [[Policy Gradient (PG)]] ... [[Proximal Policy Optimization (PPO)]]
  
 
Researchers from [https://ai.stanford.edu/ Stanford AI Lab (SAIL)] have devised a method to deal with data and environments that change over time in a way that outperforms some leading approaches to reinforcement learning. Lifelong Latent Actor-Critic, aka LILAC, uses latent variable models and a maximum entropy policy to leverage past experience for better sample efficiency and performance in dynamic environments. [https://venturebeat.com/2020/07/01/stanford-ai-researchers-introduce-lilac-reinforcement-learning-for-dynamic-environments/ Stanford AI researchers introduce LILAC, reinforcement learning for dynamic environments | Khari Johnson - VentureBeat]
 
Researchers from [https://ai.stanford.edu/ Stanford AI Lab (SAIL)] have devised a method to deal with data and environments that change over time in a way that outperforms some leading approaches to reinforcement learning. Lifelong Latent Actor-Critic, aka LILAC, uses latent variable models and a maximum entropy policy to leverage past experience for better sample efficiency and performance in dynamic environments. [https://venturebeat.com/2020/07/01/stanford-ai-researchers-introduce-lilac-reinforcement-learning-for-dynamic-environments/ Stanford AI researchers introduce LILAC, reinforcement learning for dynamic environments | Khari Johnson - VentureBeat]

Revision as of 15:40, 16 April 2023

YouTube search... ...Google search

Researchers from Stanford AI Lab (SAIL) have devised a method to deal with data and environments that change over time in a way that outperforms some leading approaches to reinforcement learning. Lifelong Latent Actor-Critic, aka LILAC, uses latent variable models and a maximum entropy policy to leverage past experience for better sample efficiency and performance in dynamic environments. Stanford AI researchers introduce LILAC, reinforcement learning for dynamic environments | Khari Johnson - VentureBeat

Continuous Action