Difference between revisions of "Hierarchical Cluster Analysis (HCA)"

From
Jump to: navigation, search
m (Text replacement - "http:" to "https:")
Line 5: Line 5:
 
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
 
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
 
}}
 
}}
[http://www.youtube.com/results?search_query=Hierarchical+Cluster+Analysis+HCA YouTube search...]
+
[https://www.youtube.com/results?search_query=Hierarchical+Cluster+Analysis+HCA YouTube search...]
[http://www.google.com/search?q=Hierarchical+Cluster+Analysis+HCA+deep+machine+learning+ML ...Google search]
+
[https://www.google.com/search?q=Hierarchical+Cluster+Analysis+HCA+deep+machine+learning+ML ...Google search]
  
 
* [[Hierarchical Clustering; Agglomerative (HAC) & Divisive (HDC)]]
 
* [[Hierarchical Clustering; Agglomerative (HAC) & Divisive (HDC)]]
Line 22: Line 22:
 
The HCPC (Hierarchical Clustering on Principal Components) approach allows us to combine the three standard methods used in multivariate data analyses (Husson, Josse, and J. 2010):
 
The HCPC (Hierarchical Clustering on Principal Components) approach allows us to combine the three standard methods used in multivariate data analyses (Husson, Josse, and J. 2010):
  
http://www.sthda.com/english/sthda-upload/figures/principal-component-methods/011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png
+
https://www.sthda.com/english/sthda-upload/figures/principal-component-methods/011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png
  
 
<youtube>EQZaSuK-PHs</youtube>
 
<youtube>EQZaSuK-PHs</youtube>

Revision as of 16:53, 28 March 2023

YouTube search... ...Google search


  1. Identify clusters (items) with closest distance
  2. Join them to new clusters
  3. Compute distance between clusters (items)
  4. Return to step 1

The HCPC (Hierarchical Clustering on Principal Components) approach allows us to combine the three standard methods used in multivariate data analyses (Husson, Josse, and J. 2010):

011-hcpc-hierarchical-clustering-on-principal-components-3d-map-1.png