Difference between revisions of "Deep Q Network (DQN)"

From
Jump to: navigation, search
m
Line 28: Line 28:
 
Deep Q learning (DQN), as published in [http://arxiv.org/abs/1312.5602 Playing Atari with Deep Reinforcement Learning | Mnih et al, 2013], leverages advances in deep learning to learn policies from high dimensional sensory input. A convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. [http://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb Vanilla Deep Q Networks: Deep Q Learning Explained | Chris Yoon - Towards Data Science]
 
Deep Q learning (DQN), as published in [http://arxiv.org/abs/1312.5602 Playing Atari with Deep Reinforcement Learning | Mnih et al, 2013], leverages advances in deep learning to learn policies from high dimensional sensory input. A convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. [http://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb Vanilla Deep Q Networks: Deep Q Learning Explained | Chris Yoon - Towards Data Science]
  
Training deep neural networks to show that a novel end-to-end reinforcement learning agent, termed a deep Q-network (DQN) [http://deepmind.com/research/dqn/ Human-level control through Deep Reinforcement Learning | Deepmind]
+
Training deep neural networks to show that a novel end-to-end reinforcement learning [[Agents|agent]], termed a deep Q-network (DQN) [http://deepmind.com/research/dqn/ Human-level control through Deep Reinforcement Learning | Deepmind]
  
 
<youtube>79pmNdyxEGo</youtube>
 
<youtube>79pmNdyxEGo</youtube>

Revision as of 08:10, 4 February 2023

Youtube search... ...Google search


Deep Q learning (DQN), as published in Playing Atari with Deep Reinforcement Learning | Mnih et al, 2013, leverages advances in deep learning to learn policies from high dimensional sensory input. A convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. Vanilla Deep Q Networks: Deep Q Learning Explained | Chris Yoon - Towards Data Science

Training deep neural networks to show that a novel end-to-end reinforcement learning agent, termed a deep Q-network (DQN) Human-level control through Deep Reinforcement Learning | Deepmind