Difference between revisions of "TensorFlow"

From
Jump to: navigation, search
(Tensorflow for Practice Specialization)
(Prior Version)
Line 73: Line 73:
 
<youtube>yXIYD0IeTnw</youtube>
 
<youtube>yXIYD0IeTnw</youtube>
  
= Prior Version =
+
=== tf.function ===
== TensorFlow 1.0 ==
+
<youtube>yH1cF7GnoIo</youtube>
<youtube>S9ElPZupUsE</youtube>
+
<youtube>Up9CvRLIIIw</youtube>
<youtube>tYYVSEHq-io</youtube>
 
<youtube>bYeBL92v99Y</youtube>
 
<youtube>Hk0yBpCqVRE</youtube>
 
<youtube>gplTc2F5Wvk</youtube>
 
<youtube>t81QhHaMS7w</youtube>
 
<youtube>kSa3UObNS6o</youtube>
 
<youtube>Rgpfk6eYxJA</youtube>
 
<youtube>eynHiQm-SUk</youtube>
 
<youtube>skf35x1lNV4</youtube>
 
<youtube>Q6ERFwQNkzo</youtube>
 
<youtube>2FmcHiLCwTU</youtube>
 
<youtube>qVwm-9P609I</youtube>
 
  
 
=== Eager Execution (Default in 2.0) ====
 
=== Eager Execution (Default in 2.0) ====
Line 94: Line 82:
 
<youtube>T8AW0fKP0Hs</youtube>
 
<youtube>T8AW0fKP0Hs</youtube>
 
<youtube>yPgvoLWSkFo</youtube>
 
<youtube>yPgvoLWSkFo</youtube>
 +
 +
=== tf.data - TF Input Pipeline ===
 +
<youtube>kVEOCfBy9uY</youtube>
 +
<youtube>n7byMbl2VUQ</youtube>
 +
<youtube>uIcqeP7MFH0</youtube>
 +
<youtube>VeV65oVvoes</youtube>
 +
 +
=== tf.distribute ===
 +
<youtube>ZnukSLKEw34</youtube>
 +
<youtube>jKV53r9-H14</youtube>
 +
 +
=== mesh-TensorFlow ===
 +
 +
<youtube>HgGyWS40g-g</youtube>
 +
 +
 +
=== TensorFlow Probability ===
 +
<youtube>BrwKURU-wpk</youtube>
 +
 +
=== Reinforcement Learning with TF-AgentsTF-Agents ===
 +
<youtube>-TTziY7EmUA</youtube>
 +
<youtube>tAOApRQAgpc</youtube>
  
 
= Tensorflow for Practice Specialization =
 
= Tensorflow for Practice Specialization =

Revision as of 18:37, 6 August 2020

Youtube search... ...Google search

  • The API...
    • tf.estimator available alongside the newer Keras high-level API.
    • tf.function a wrapper to use when writing certain functions in Python
    • tf.Transform includes converting between formats, tokenizing and stemming text and forming vocabularies
  • Related...

tensorflow-2-1-768x426.png


TensorFlow 2.0

TensorFlow 2.0 focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs, and flexible model building on any platform, tight Keras integration. You can easily ingest datasets via tf.data pipelines, and you can monitor your training in TensorBoard directly from Colaboratory and Jupyter Notebooks. TensorFlow 2.0 and Google Cloud AI make it easy to train, deploy, and maintain scalable machine learning models | Paige Bailey and Barrett Williams - Google

GPU

Code Conversion

Examples

tf.function

Eager Execution (Default in 2.0) =

Youtube search...

tf.data - TF Input Pipeline

tf.distribute

mesh-TensorFlow


TensorFlow Probability

Reinforcement Learning with TF-AgentsTF-Agents

Tensorflow for Practice Specialization