Differentiable Programming

From
Revision as of 16:17, 26 April 2020 by BPeat (talk | contribs) (Created page with "{{#seo: |title=PRIMO.ai |titlemode=append |keywords=artificial, intelligence, machine, learning, models, algorithms, data, singularity, moonshot, Tensorflow, Google, Nvidia, M...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

YouTube search... ...Google search

Differentiable programs are programs that rewrite themselves at least one component by optimizing along a gradient, like neural networks do using optimization algorithms such as gradient descent. Here’s a graphic illustrating the difference between differential and probabilistic programming approaches. A Beginner's Guide to Differentiable Programming | Chris Nicholson - A.I. Wiki pathmind

TensorFlow 1 uses the static graph approach, whereas TensorFlow 2 uses the dynamic graph approach by default. Differentiable programming | Wikipedia

differentiable_probabilistic.jpg