...Google search
Youtube search...
|
Introduction to Forecasting in Machine Learning and Deep Learning
Forecasts are critical in many fields, including finance, manufacturing, and meteorology. At Uber, probabilistic time series forecasting is essential for marketplace optimization, accurate hardware capacity predictions, marketing spend allocations, and real-time system outage detection across millions of metrics.
In this talk, Franziska Bell provides an overview of classical, machine learning and deep learning forecasting approaches. In addition fundamental forecasting best practices will be covered. This video was recorded at QCon.ai 2018: http://bit.ly/2piRtLl If you are a software engineer that wants to learn more about machine learning check our dedicated introductory guide http://bit.ly/2HPyuzY . For more awesome presentations on innovator and early adopter, topics check InfoQ’s selection of talks from conferences worldwide http://bit.ly/2tm9loz
|
|
|
|
Predicting with a Neural Network explained
In this video, we explain the concept of using an artificial neural network to predict on new data. We also show how to predict in code with Keras.
|
|
Time Series Forecasting
Time Series Forecasting Methods - Statistical
Time Series Forecasting - Deep Learning
Applying deep learning methods like Multilayer Neural Networks and Long Short-Term Memory (LSTM) Recurrent Neural Network models to time series forecasting problems.| Jason Brownlee - Machine Learning Mastery
Demand Forecasting
|
Demand Forecasting Using AI and Machine Learning (AI For Business Episode 1)
In this video, we will explore how Machine Learning is used for demand forecasting. Enjoy the video and please like, subscribe and turn on the notifications. In this video, I will start with identifying the challenge, followed by exploring the solution, then providing background of the process and the technology behind it, and finally how it can be applied in the enterprise together with some examples.
|
|
|
|