Data Science

From
Revision as of 09:31, 7 September 2020 by BPeat (talk | contribs)
Jump to: navigation, search

YouTube search... ...Google search

Data Fallacies to Avoid - An Illustrated Collection of Mistakes People Often Make When Analyzing Data - Tom Bransby

Learn Data Science Today - Data Science Tutorial for Beginners 2020!
This Data Science Course will give you a Step by Step idea about the Data Science Career, Data science Hands-On Projects, roles & salary offered to a Data Scientist!

What is Data Science? | Introduction to Data Science | Data Science for Beginners | Simplilearn
This Data Science tutorial will help you in understanding what is Data Science, why we need Data Science, prerequisites for learning Data Science, what does a Data Scientist do, Data Science lifecycle with an example and career opportunities in Data Science domain. You will also learn the differences between Data Science and Business intelligence. The role of a data scientist is one of the sexiest jobs of the century. The demand for data scientists is high, and the number of opportunities for certified data scientists is increasing. Every day, companies are looking out for more and more skilled data scientists and studies show that there is expected to be a continued shortfall in qualified candidates to fill the roles.

Intro to Data Science - Crash Course for Beginners
Learn the basic components of Data Science in this crash course for beginners. In this course for beginners, you will learn about: 1. Statistics: we talk about the types of data you'll encounter, types of averages, variance, standard deviation, correlation, and more. 2. Data visualization: we talk about why we need to visualize our data, and the different ways of doing it (1 variable graphs, 2 variable graphs and 3 variable graphs.) 3. Programming: we talk about why programming helps us with data science including the ease of automation and recommended Python libraries for you to get started with data science.

Data Science in 30 Minutes: Predicting Content Demand with Machine Learning
Netflix is well-known for its data-driven recommendations that seek to customize the user experience for every subscriber. But data science at Netflix extends far beyond that - from optimizing streaming and content caching to informing decisions about the TV shows and films available on the service. The talk covered work done by Becky and the Content Data Science team at Netflix, which seeks to evaluate where Netflix should spend their next content dollar using machine learning and predictive models. The Data Incubator is a data science education company based in NYC, DC, and SF with both corporate training as well as recruiting services. For data science corporate training, we offer customized, in-house corporate training solutions in data and analytics. For data science hiring, we run a free 8 week fellowship training PhDs to become data scientists. The fellowship selects 2% of its 2000+ quarterly applicants and is free for Fellows. Hiring companies (including EBay, Capital One, Pfizer) pay a recruiting fee only if they successfully hire. You can read about us on Harvard Business Review, VentureBeat, or The Next Web, or read about our alumni at LinkedIn, Palantir or the NYTimes. About the speakers: Dr. Becky Tucker is a Senior Data Scientist at Netflix, a streaming media and entertainment company based in Los Gatos, CA. She holds a PhD in Physics from Caltech. At Netflix, Becky works on models that predict the demand for TV shows and movies. Michael Li founded The Data Incubator, a New York-based training program that turns talented PhDs from academia into workplace-ready data scientists and quants. The program is free to Fellows, employers engage with the Incubator as hiring partners.


The What, Where and How of Data Science | Iliya Valchanov

1*z5VIYRsdFI-b8WPVyFPeWQ.png