|
|
Line 3: |
Line 3: |
| * [[AI Solver]] | | * [[AI Solver]] |
| * [[...find outliers]] | | * [[...find outliers]] |
| + | * [[Anomaly Detection]] |
| * [[Dimensional Reduction Algorithms]] | | * [[Dimensional Reduction Algorithms]] |
| | | |
Line 8: |
Line 9: |
| <youtube>kw9R0nD69OU</youtube> | | <youtube>kw9R0nD69OU</youtube> |
| <youtube>_UVHneBUBW0</youtube> | | <youtube>_UVHneBUBW0</youtube> |
− |
| |
− | == Anomaly Detection ==
| |
− | [http://www.youtube.com/results?search_query=Principal+Components+Analysis+PCA+Anomaly+Detection+Outliers YouTube search...]
| |
− |
| |
− | * [http://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection PCA-Based Anomaly Detection | Microsoft]
| |
− |
| |
− | PCA-based anomaly detection - the vast majority of the data falls into a stereotypical distribution; points deviating dramatically from that distribution are suspect [http://www.linkedin.com/pulse/part-2-keep-simple-machine-learning-algorithms-big-dr-dinesh/ Keep it Simple : Machine Learning & Algorithms for Big Boys | Dinesh Chandrasekar]
| |
− |
| |
− | http://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tk/2013/07/figures/ttk20130714602.gif
| |
− |
| |
− | == [[Principal Component Analysis (PCA)]]
| |
− |
| |
− | <youtube>hxGF7cPvs_c</youtube>
| |
− | <youtube>ExoAbXPJ7NQ</youtube>
| |
− | <youtube>UEPFCp5WpIY</youtube>
| |
− | <youtube>6lc6Oz0k9WA</youtube>
| |