Difference between revisions of "Principal Component Analysis (PCA)"

From
Jump to: navigation, search
Line 3: Line 3:
 
* [[AI Solver]]
 
* [[AI Solver]]
 
* [[...find outliers]]
 
* [[...find outliers]]
 +
* [[Anomaly Detection]]
 
* [[Dimensional Reduction Algorithms]]
 
* [[Dimensional Reduction Algorithms]]
  
Line 8: Line 9:
 
<youtube>kw9R0nD69OU</youtube>
 
<youtube>kw9R0nD69OU</youtube>
 
<youtube>_UVHneBUBW0</youtube>
 
<youtube>_UVHneBUBW0</youtube>
 
== Anomaly Detection ==
 
[http://www.youtube.com/results?search_query=Principal+Components+Analysis+PCA+Anomaly+Detection+Outliers YouTube search...]
 
 
* [http://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection PCA-Based Anomaly Detection | Microsoft]
 
 
PCA-based anomaly detection - the vast majority of the data falls into a stereotypical distribution; points deviating dramatically from that distribution are suspect [http://www.linkedin.com/pulse/part-2-keep-simple-machine-learning-algorithms-big-dr-dinesh/ Keep it Simple : Machine Learning & Algorithms for Big Boys | Dinesh Chandrasekar]
 
 
http://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tk/2013/07/figures/ttk20130714602.gif
 
 
== [[Principal Component Analysis (PCA)]]
 
 
<youtube>hxGF7cPvs_c</youtube>
 
<youtube>ExoAbXPJ7NQ</youtube>
 
<youtube>UEPFCp5WpIY</youtube>
 
<youtube>6lc6Oz0k9WA</youtube>
 

Revision as of 08:05, 29 July 2018