Difference between revisions of "Principal Component Analysis (PCA)"
m (BPeat moved page Principle Component Analysis (PCA) to Principal Component Analysis (PCA) without leaving a redirect) |
|||
Line 1: | Line 1: | ||
− | [http://www.youtube.com/results?search_query=Principal+Components+Analysis+PCA | + | [http://www.youtube.com/results?search_query=Principal+Components+Analysis+PCA YouTube search...] |
* [[AI Solver]] | * [[AI Solver]] | ||
* [[...find outliers]] | * [[...find outliers]] | ||
* [[Dimensional Reduction Algorithms]] | * [[Dimensional Reduction Algorithms]] | ||
+ | |||
+ | <youtube>u6A-rnsj8sg</youtube> | ||
+ | <youtube>kw9R0nD69OU</youtube> | ||
+ | <youtube>_UVHneBUBW0</youtube> | ||
+ | |||
+ | == Anomaly Detection == | ||
+ | [http://www.youtube.com/results?search_query=Principal+Components+Analysis+PCA+Anomaly+Detection+Outliers YouTube search...] | ||
+ | |||
* [http://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection PCA-Based Anomaly Detection | Microsoft] | * [http://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection PCA-Based Anomaly Detection | Microsoft] | ||
PCA-based anomaly detection - the vast majority of the data falls into a stereotypical distribution; points deviating dramatically from that distribution are suspect [http://www.linkedin.com/pulse/part-2-keep-simple-machine-learning-algorithms-big-dr-dinesh/ Keep it Simple : Machine Learning & Algorithms for Big Boys | Dinesh Chandrasekar] | PCA-based anomaly detection - the vast majority of the data falls into a stereotypical distribution; points deviating dramatically from that distribution are suspect [http://www.linkedin.com/pulse/part-2-keep-simple-machine-learning-algorithms-big-dr-dinesh/ Keep it Simple : Machine Learning & Algorithms for Big Boys | Dinesh Chandrasekar] | ||
− | + | http://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tk/2013/07/figures/ttk20130714602.gif | |
+ | |||
+ | == [[Principal Component Analysis (PCA)]] | ||
<youtube>hxGF7cPvs_c</youtube> | <youtube>hxGF7cPvs_c</youtube> | ||
Line 14: | Line 24: | ||
<youtube>UEPFCp5WpIY</youtube> | <youtube>UEPFCp5WpIY</youtube> | ||
<youtube>6lc6Oz0k9WA</youtube> | <youtube>6lc6Oz0k9WA</youtube> | ||
− | |||
− | |||
− | |||
− |
Revision as of 07:49, 29 July 2018
Anomaly Detection
PCA-based anomaly detection - the vast majority of the data falls into a stereotypical distribution; points deviating dramatically from that distribution are suspect Keep it Simple : Machine Learning & Algorithms for Big Boys | Dinesh Chandrasekar
== Principal Component Analysis (PCA)