Difference between revisions of "Converting to TensorFlow Lite"
(→TocoConverter (THIS FUNCTION IS DEPRECATED)) |
|||
| Line 36: | Line 36: | ||
<youtube>ICY4Lvhyobk</youtube> | <youtube>ICY4Lvhyobk</youtube> | ||
| − | + | ||
== TocoConverter (THIS FUNCTION IS DEPRECATED) == | == TocoConverter (THIS FUNCTION IS DEPRECATED) == | ||
Revision as of 04:06, 27 June 2019
Youtube search... ...Google search
TensorFlow Lite converter: lite.TFLiteConverter
The TensorFlow Lite converter is used to convert TensorFlow models; GraphDef or SavedModel into an optimized FlatBuffer format, so that they can be used by the TensorFlow Lite interpreter or graph visualization.
# Converting a GraphDef from session.
converter = lite.TFLiteConverter.from_session(sess, in_tensors, out_tensors)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
# Converting a GraphDef from file.
converter = lite.TFLiteConverter.from_frozen_graph(
graph_def_file, input_arrays, output_arrays)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
# Converting a SavedModel. converter = lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert()
# Converting a tf.keras model. converter = lite.TFLiteConverter.from_keras_model_file(keras_model) tflite_model = converter.convert()
TocoConverter (THIS FUNCTION IS DEPRECATED)