Difference between revisions of "AI Platform"
| Line 15: | Line 15: | ||
“The AI Platform is the place where if you’re taking this terrifying journey from a germ of an idea of how you can use AI in your enterprise all the way through launch of a safe, reliable deployment, the AI Platform helps you move between each of those stages in a safe way,” Google Cloud chief AI scientist Andrew Moore told reporters ahead of the news. “So you can start with exploratory data analysis, start to build models using a data scientist, decide you want to use a specific model, and then essentially with one click be able to deploy it in our Google Cloud or in other clouds, or on-premises running on top of Kubernetes.” | “The AI Platform is the place where if you’re taking this terrifying journey from a germ of an idea of how you can use AI in your enterprise all the way through launch of a safe, reliable deployment, the AI Platform helps you move between each of those stages in a safe way,” Google Cloud chief AI scientist Andrew Moore told reporters ahead of the news. “So you can start with exploratory data analysis, start to build models using a data scientist, decide you want to use a specific model, and then essentially with one click be able to deploy it in our Google Cloud or in other clouds, or on-premises running on top of Kubernetes.” | ||
| − | <youtube> | + | <youtube>PZ1Lqxfs1yw&t=2790s</youtube> |
| − | <youtube> | + | <youtube>vmOMataJZWw</youtube> |
Revision as of 21:42, 11 April 2019
YouTube search... ...Google search
- AI Platform
- Google AI Hub
- Google Kubeflow Pipelines
- Google Offerings
“The AI Platform is the place where if you’re taking this terrifying journey from a germ of an idea of how you can use AI in your enterprise all the way through launch of a safe, reliable deployment, the AI Platform helps you move between each of those stages in a safe way,” Google Cloud chief AI scientist Andrew Moore told reporters ahead of the news. “So you can start with exploratory data analysis, start to build models using a data scientist, decide you want to use a specific model, and then essentially with one click be able to deploy it in our Google Cloud or in other clouds, or on-premises running on top of Kubernetes.”