Difference between revisions of "Fine-tuning"
m |
m |
||
Line 25: | Line 25: | ||
* [https://arstechnica.com/information-technology/2023/08/you-can-now-train-chatgpt-on-your-own-documents-via-api/ You can now train ChatGPT on your own documents via API | Benj Edwards - ARS Technica] ... Developers can now bring their own data to customize GPT-3.5 Turbo outputs; running [[supervised]] fine-tuning to make this model perform better for their use cases by uploading documents using the command-line tool [https://en.wikipedia.org/wiki/CURL cURL] to query an API web address | * [https://arstechnica.com/information-technology/2023/08/you-can-now-train-chatgpt-on-your-own-documents-via-api/ You can now train ChatGPT on your own documents via API | Benj Edwards - ARS Technica] ... Developers can now bring their own data to customize GPT-3.5 Turbo outputs; running [[supervised]] fine-tuning to make this model perform better for their use cases by uploading documents using the command-line tool [https://en.wikipedia.org/wiki/CURL cURL] to query an API web address | ||
** [https://platform.openai.com/docs/guides/fine-tuning Fine-tuning for GPT 3.5 Turbo | OpenAI] | ** [https://platform.openai.com/docs/guides/fine-tuning Fine-tuning for GPT 3.5 Turbo | OpenAI] | ||
+ | |||
Line 77: | Line 78: | ||
* [https://www.youtube.com/hashtag/chatgpt #chatgpt] | * [https://www.youtube.com/hashtag/chatgpt #chatgpt] | ||
|} | |} | ||
+ | |||
+ | = Instruction Tuning = | ||
+ | * [https://self-supervised.cs.jhu.edu/sp2023/files/Instruction%20tuning%20of%20LLMs%20-%20Talk@JHU.pdf Instruction Tuning of Large Language Models | Yizhong Wang - John Hopkins University (JHU)] | ||
+ | * [https://arxiv.org/abs/2304.03277 Instruction Tuning with GPT-4 | B. Peng, C. Li, P. He, M. Galley, & J. Gao - arXiv] | ||
+ | |||
+ | Instructional tuning is a technique that aims to teach [[Large Language Model (LLM)]] to follow natural language instructions, such as prompts, examples, and constraints, to perform better on various [[Natural Language Processing (NLP)]] tasks. Instructional tuning can improve the capabilities and controllability of LLMs across different tasks, domains, and modalities. It can also enable [[Large Language Model (LLM)|LLMs]] to generalize to unseen tasks by using instructions as a bridge between the pretraining objective and the user’s objective. | ||
+ | |||
+ | Instructional tuning involves fine-tuning [[Large Language Model (LLM)|LLMs]] with instructional data, which consists of pairs of human-written instructions and desired outputs. For example, an instruction could be “Write a summary of the following article in three sentences” and an output could be “The article discusses the benefits of instructional tuning for [[Large Language Model (LLM)|large language models]]. It presents a survey paper that covers the fundamentals, challenges, and applications of this technique. It also introduces a new method called Laura that leverages [[Large Language Model (LLM)|LLMs]] to generate instructional data for themselves.” Instructional data can be collected from various sources, such as existing NLP datasets, expert annotations, or even [[Large Language Model (LLM)|LLMs]] themselves. | ||
+ | |||
+ | = Laura = |
Revision as of 20:03, 12 September 2023
YouTube ... Quora ...Google search ...Google News ...Bing News
- Embedding ... Fine-tuning ... Search ... Clustering ... Recommendation ... Anomaly Detection ... Classification ... Dimensional Reduction. ...find outliers
- Prompting vs AI Model Fine-Tuning vs AI Embeddings
- Alpaca
- You can now train ChatGPT on your own documents via API | Benj Edwards - ARS Technica ... Developers can now bring their own data to customize GPT-3.5 Turbo outputs; running supervised fine-tuning to make this model perform better for their use cases by uploading documents using the command-line tool cURL to query an API web address
A process of retraining a language model on a new dataset of data. This can be used to improve the model's performance on a specific task, such as generating text, translating languages, or answering questions. Fine-tuning is a way to add new knowledge to an existing AI model. It’s a simple upgrade that allows the model to learn new information.
Here are some more detailed information on fine-tuning:
- Fine-tuning is a relatively simple process. The first step is to select a pre-trained language model. There are many pre-trained language models available, such as GPT-3, RoBERTa, and XLNet. Once you have selected a pre-trained language model, you need to gather a dataset of data for fine-tuning. This dataset should be relevant to the task that you want the model to perform. For example, if you want to fine-tune a language model for question answering, you would need to gather a dataset of questions and answers.
- The next step is to fine-tune the language model on the dataset of data. This is done by using a technique called supervised learning. In supervised learning, the model is given a set of labeled examples. In the case of fine-tuning, the labels are the answers to the questions in the dataset. The model is then trained to predict the labels for the unlabeled examples in the dataset.
- Fine-tuning can be a time-consuming process, but it can significantly improve the performance of a language model on a specific task. For example, fine-tuning a language model on a dataset of question and answers can improve the model's ability to answer new questions.
Here are some examples of fine-tuning:
- Fine-tuning OpenAI's base models such as Davinc, Curie, Babbage, and Ada to improve their performance on a variety of tasks, such as generating text, translating languages, and answering questions.
- Fine-tuning a binary classifier to rate each completion for truthfulness based on expert-labeled examples.
- Incorporating proprietary content into a language model to improve its ability to provide relevant answers to questions.
Fine-tuning is a powerful technique that can be used to improve the performance of language models on a variety of tasks. If you are looking to improve the performance of a language model on a specific task, fine-tuning is a good option to consider.
Large Language Model (LLM) Ecosystem Explained
The Large Language Model (LLM) ecosystem refers to the various commercial and open-source LLM providers, their offerings, and the tooling that helps accelerate their wide adoption. The functionality of LLMs can be segmented into five areas: Knowledge Answering, Translation, Text Generation, Response Generation, and Classification. There are many options to choose from for all types of language tasks.
LLM Ecosystem explained: Your ultimate Guide to AI | code_your_own_AI
A comprehensive LLM /AI ecosystem is essential for the creation and implementation of sophisticated AI applications. It facilitates the efficient processing of large-scale data, the development of complex machine learning models, and the deployment of intelligent systems capable of performing complex tasks. As the field of AI continues to evolve and expand, the importance of a well-integrated and cohesive AI ecosystem cannot be overstated. A complete overview of today's LLM and how you can train them for your needs. |
Instruction Tuning
- Instruction Tuning of Large Language Models | Yizhong Wang - John Hopkins University (JHU)
- Instruction Tuning with GPT-4 | B. Peng, C. Li, P. He, M. Galley, & J. Gao - arXiv
Instructional tuning is a technique that aims to teach Large Language Model (LLM) to follow natural language instructions, such as prompts, examples, and constraints, to perform better on various Natural Language Processing (NLP) tasks. Instructional tuning can improve the capabilities and controllability of LLMs across different tasks, domains, and modalities. It can also enable LLMs to generalize to unseen tasks by using instructions as a bridge between the pretraining objective and the user’s objective.
Instructional tuning involves fine-tuning LLMs with instructional data, which consists of pairs of human-written instructions and desired outputs. For example, an instruction could be “Write a summary of the following article in three sentences” and an output could be “The article discusses the benefits of instructional tuning for large language models. It presents a survey paper that covers the fundamentals, challenges, and applications of this technique. It also introduces a new method called Laura that leverages LLMs to generate instructional data for themselves.” Instructional data can be collected from various sources, such as existing NLP datasets, expert annotations, or even LLMs themselves.