Difference between revisions of "DeepLens - deep learning enabled video camera"
(→Projects) |
|||
Line 3: | Line 3: | ||
* [http://aws.amazon.com/deeplens/ Product page...] | * [http://aws.amazon.com/deeplens/ Product page...] | ||
* [http://www.slideshare.net/AmazonWebServices/aws-deeplens-workshop-building-computer-vision-applications AWS DeepLens Workshop: Building Computer Vision Applications] | * [http://www.slideshare.net/AmazonWebServices/aws-deeplens-workshop-building-computer-vision-applications AWS DeepLens Workshop: Building Computer Vision Applications] | ||
+ | * [http://blog.soracom.io/aws-deeplens-meets-soracom-fc121858cd70 AWS DeepLens meets SORACOM; cellular enabled cloud-connectivity-as-a-service platform] | ||
https://docs.aws.amazon.com/deeplens/latest/dg/images/deeplens-hiw-general.png | https://docs.aws.amazon.com/deeplens/latest/dg/images/deeplens-hiw-general.png | ||
Line 36: | Line 37: | ||
https://d2908q01vomqb2.cloudfront.net/f1f836cb4ea6efb2a0b1b99f41ad8b103eff4b59/2017/11/30/DeepLens-Flow-1.gif | https://d2908q01vomqb2.cloudfront.net/f1f836cb4ea6efb2a0b1b99f41ad8b103eff4b59/2017/11/30/DeepLens-Flow-1.gif | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<youtube>RhEVld4GwzU</youtube> | <youtube>RhEVld4GwzU</youtube> | ||
Line 64: | Line 48: | ||
<youtube>PbQO3-jYkGo</youtube> | <youtube>PbQO3-jYkGo</youtube> | ||
<youtube>cTsCMTxEPHs</youtube> | <youtube>cTsCMTxEPHs</youtube> | ||
− | |||
== Projects == | == Projects == | ||
Line 93: | Line 76: | ||
<youtube>suQnh1TvGHw</youtube> | <youtube>suQnh1TvGHw</youtube> | ||
<youtube>TS4ShpBHr_g</youtube> | <youtube>TS4ShpBHr_g</youtube> | ||
+ | |||
+ | == I just got my DeepLens! == | ||
+ | |||
+ | * [http://aws.amazon.com/deeplens/resources/ DeepLens Developer Resources] | ||
+ | ** [http://aws.amazon.com/getting-started/tutorials/configure-aws-deeplens/ Configure Your New AWS DeepLens] | ||
+ | ** [http://aws.amazon.com/getting-started/tutorials/build-deeplens-project-sagemaker/?trk=gs_card Build an AWS DeepLens Project] | ||
+ | ** [http://aws.amazon.com/getting-started/tutorials/create-deploy-project-deeplens/?trk=gs_card Creating and Deploying an AWS DeepLens Project] | ||
+ | ** [http://aws.amazon.com/getting-started/tutorials/extend-deeplens-project/?trk=gs_card Extending Your AWS DeepLens Project] | ||
+ | * [http://blog.kloud.com.au/2018/02/27/aws-deeplens-part-1-getting-the-deeplens-online/ Part 1 - Getting Online | SAMZAKKOUR @ Kloud] | ||
+ | * [http://www.lynda.com/Amazon-Web-Services-tutorials/Setting-up-your-AWS-DeepLens/706932/737910-4.html Lynda.com Setting up your AWS DeepLens] | ||
+ | |||
+ | <youtube>j0DkaM4L6n4</youtube> | ||
+ | <youtube>nINqpklf7Eo</youtube> | ||
+ | |||
== SSH == | == SSH == |
Revision as of 07:02, 24 June 2018
- Product page...
- AWS DeepLens Workshop: Building Computer Vision Applications
- AWS DeepLens meets SORACOM; cellular enabled cloud-connectivity-as-a-service platform
Contents
Integrated Components/Technologies
- Lex - conversational interfaces using voice and text
- SageMaker - build, train, and deploy
- Polly - text to speech
- Rekognition - video analysis service
- Kinesis - collect, process, and analyze real-time, streaming data
- Lambda - run code without managing servers
- AWS IoT Services Overview
- Internet of Things (IoT) Core - process and route those messages to AWS endpoints
- AWS IoT Button
- Greengrass - connected devices can run AWS Lambda functions, keep device data in sync
- Intel® Compute Library for Deep Neural Networks (clDNN) & OpenVINO - deep learning primitives for computer vision
- Simple Queue Service (SQS) - message queuing
- Simple Notification Service (SNS) - pub/sub messaging and mobile notifications
- DynamoDB - NoSQL database
- Simple Storage Service (S3) - object storage
- Management Console - manage web services
- Deep Learning (DL) Amazon Machine Image (AMI) - DLAMI
- SoftAP - software enabled access point
- Ubuntu - operating system
Frameworks
Projects
- aws-ml-vision-end2end - Jupyter Notebook tutorials walking through deep learning Frameworks (MXNet, Gluon) to Platforms (SageMaker, DeepLens) for common CV use-cases | GitHub
- Deploy Gluon models to AWS DeepLens using a simple Python API
Processor
With over 100 GFLOPS of compute power on the device, it can process deep learning predictions on HD video for real time.
I just got my DeepLens!
- DeepLens Developer Resources
- Part 1 - Getting Online | SAMZAKKOUR @ Kloud
- Lynda.com Setting up your AWS DeepLens
SSH