Difference between revisions of "Libraries & Frameworks"
m |
m (Text replacement - "http:" to "https:") |
||
| Line 5: | Line 5: | ||
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools | |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools | ||
}} | }} | ||
| − | [ | + | [https://www.youtube.com/results?search_query=library+framework+deep+learning+artificial+intelligence+deep+learning Youtube search...] |
| − | [ | + | [https://www.google.com/search?q=library+framework+deep+machine+learning+deep+learning+ML+artificial+intelligence ...Google search] |
* [[Libraries & Frameworks Overview]] | * [[Libraries & Frameworks Overview]] | ||
* [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)]] | * [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)]] | ||
| − | * [ | + | * [https://github.com/THUNLP-MT Machine Translation open-source toolkits | Tsinghua Natural Language Processing Group] |
| − | * [ | + | * [https://www.dmoztools.net/Computers/Artificial_Intelligence/Machine_Learning/Software/ Machine Learning Software | DMOZtools.net] |
* [[Python]] ... [[Generative AI with Python]] ... [[Javascript]] ... [[Generative AI with Javascript]] ... [[Game Development with Generative AI]] | * [[Python]] ... [[Generative AI with Python]] ... [[Javascript]] ... [[Generative AI with Javascript]] ... [[Game Development with Generative AI]] | ||
* [[Development]] ...[[Development#AI Pair Programming Tools|AI Pair Programming Tools]] ... [[Analytics]] ... [[Visualization]] ... [[Diagrams for Business Analysis]] | * [[Development]] ...[[Development#AI Pair Programming Tools|AI Pair Programming Tools]] ... [[Analytics]] ... [[Visualization]] ... [[Diagrams for Business Analysis]] | ||
| Line 37: | Line 37: | ||
* [[Shogun]] | * [[Shogun]] | ||
* [[Ray - UC Berkeley RISELab]] | * [[Ray - UC Berkeley RISELab]] | ||
| − | * [ | + | * [https://en.wikipedia.org/wiki/MLPACK_(C%2B%2B_library) MLPACK (C++ library)] |
| − | * [ | + | * [https://en.wikipedia.org/wiki/Accord.NET Accord.NET] |
* [[Python#OpenCV| OpenCV]] Open Computer Vision - work with images and/or videos and wish to add a variety of classical and state-of-the-art vision algorithms to their toolbox. | * [[Python#OpenCV| OpenCV]] Open Computer Vision - work with images and/or videos and wish to add a variety of classical and state-of-the-art vision algorithms to their toolbox. | ||
| − | * [ | + | * [https://en.wikipedia.org/wiki/OpenCog OpenCog], a GPL-licensed framework for artificial intelligence written in C++, Python and Scheme. |
| − | * [ | + | * [https://en.wikipedia.org/wiki/RapidMiner RapidMiner], an environment for machine learning and [[data mining]], now developed commercially. |
| − | * [ | + | * [https://en.wikipedia.org/wiki/Weka Weka], a free implementation of many machine learning algorithms in Java. |
{|<!-- T --> | {|<!-- T --> | ||
| Line 130: | Line 130: | ||
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
| − | | {{Yes}}<ref>{{cite web|url= | + | | {{Yes}}<ref>{{cite web|url=https://caffe.berkeleyvision.org/model_zoo.html|title=Caffe Model Zoo}}</ref> |
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
| Line 146: | Line 146: | ||
| {{Yes}} | | {{Yes}} | ||
| {{Depends|On roadmap}}<ref>{{cite web|url=https://github.com/deeplearning4j/nd4j/issues/27|title=Support for Open CL · Issue #27 · deeplearning4j/nd4j|work=GitHub}}</ref> | | {{Depends|On roadmap}}<ref>{{cite web|url=https://github.com/deeplearning4j/nd4j/issues/27|title=Support for Open CL · Issue #27 · deeplearning4j/nd4j|work=GitHub}}</ref> | ||
| − | | {{Yes}}<ref>{{cite web|url= | + | | {{Yes}}<ref>{{cite web|url=https://nd4j.org/gpu_native_backends.html|title=N-Dimensional Scientific Computing for Java|publisher=}}</ref><ref>{{cite web|url=https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch|title=Comparing Top Deep Learning Frameworks|publisher=Deeplearning4j}}</ref> |
| {{Yes|Computational Graph}} | | {{Yes|Computational Graph}} | ||
| − | | {{Yes}}<ref>{{cite web|url= | + | | {{Yes}}<ref>{{cite web|url=https://deeplearning4j.org/model-zoo|title=Deeplearning4j Models|author1=Chris Nicholson|author2= Adam Gibson|publisher=}}</ref> |
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
| − | | {{Yes}}<ref>{{cite web|url= | + | | {{Yes}}<ref>{{cite web|url=https://deeplearning4j.org/spark|title=Deeplearning4j on Spark|author=Deeplearning4j|publisher=Deeplearning4j}}</ref> |
| | | | ||
|- | |- | ||
| Line 329: | Line 329: | ||
| {{Yes}} | | {{Yes}} | ||
| {{Yes}}<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref> | | {{Yes}}<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref> | ||
| − | | {{Yes}}<ref name="cntk.ai">{{cite web|url= | + | | {{Yes}}<ref name="cntk.ai">{{cite web|url=https://www.cntk.ai/|title=CNTK - Computational Network Toolkit|publisher=Microsoft Corporation}}</ref> |
| {{Yes}}<ref name="cntk.ai" /> | | {{Yes}}<ref name="cntk.ai" /> | ||
| {{Yes}} | | {{Yes}} | ||
| Line 390: | Line 390: | ||
|- | |- | ||
|[https://github.com/plaidml/plaidml PlaidML] | |[https://github.com/plaidml/plaidml PlaidML] | ||
| − | |[ | + | |[https://vertex.ai Vertex.AI] |
|[[AGPL 3|AGPL3]] | |[[AGPL 3|AGPL3]] | ||
| {{Yes}} | | {{Yes}} | ||
| Line 487: | Line 487: | ||
| [[Python (programming language)|Python]] ([[Keras]]) | | [[Python (programming language)|Python]] ([[Keras]]) | ||
| {{Yes}} | | {{Yes}} | ||
| − | | {{Depends|Under development<ref>{{cite web|url= | + | | {{Depends|Under development<ref>{{cite web|url=https://deeplearning.net/software/theano/tutorial/using_gpu.html|title=Using the GPU — Theano 0.8.2 documentation|publisher=}}</ref>}} |
| {{Yes}} | | {{Yes}} | ||
| − | | {{Yes}}<ref> | + | | {{Yes}}<ref>https://deeplearning.net/software/theano/library/gradient.html</ref><ref>https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ</ref> |
| {{Depends|Through Lasagne's model zoo<ref>{{cite web|url=https://github.com/Lasagne/Recipes/tree/master/modelzoo|title=Recipes/modelzoo at master · Lasagne/Recipes · GitHub|work=GitHub}}</ref>}} | | {{Depends|Through Lasagne's model zoo<ref>{{cite web|url=https://github.com/Lasagne/Recipes/tree/master/modelzoo|title=Recipes/modelzoo at master · Lasagne/Recipes · GitHub|work=GitHub}}</ref>}} | ||
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
| − | | {{Yes}}<ref>[ | + | | {{Yes}}<ref>[https://deeplearning.net/software/theano/tutorial/using_multi_gpu.html Using multiple GPUs — Theano 0.8.2 documentation]</ref> |
| | | | ||
|- | |- | ||
| Line 503: | Line 503: | ||
| [[Linux]], [[macOS]], [[Microsoft Windows|Windows]],<ref>https://github.com/torch/torch7/wiki/Windows</ref> [[Android (operating system)|Android]],<ref>{{cite web|url=https://github.com/soumith/torch-android|title=GitHub - soumith/torch-android: Torch-7 for Android|work=GitHub}}</ref> [[iOS]] | | [[Linux]], [[macOS]], [[Microsoft Windows|Windows]],<ref>https://github.com/torch/torch7/wiki/Windows</ref> [[Android (operating system)|Android]],<ref>{{cite web|url=https://github.com/soumith/torch-android|title=GitHub - soumith/torch-android: Torch-7 for Android|work=GitHub}}</ref> [[iOS]] | ||
| [[C (programming language)|C]], [[Lua (programming language)|Lua]] | | [[C (programming language)|C]], [[Lua (programming language)|Lua]] | ||
| − | | [[Lua (programming language)|Lua]], [[Lua (programming language)|LuaJIT]],<ref>{{cite web|url= | + | | [[Lua (programming language)|Lua]], [[Lua (programming language)|LuaJIT]],<ref>{{cite web|url=https://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf|title=Torch7: A Matlab-like Environment for Machine Learning}}</ref> [[C (programming language)|C]], utility library for [[C++]]/[[OpenCL]]<ref name=jtorch>{{cite web|url=https://github.com/jonathantompson/jtorch|title=GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library|work=GitHub}}</ref> |
| {{Yes}} | | {{Yes}} | ||
| {{Depends|Third party implementations<ref>{{cite web|url=https://github.com/torch/torch7/wiki/Cheatsheet#opencl|title=Cheatsheet|work=GitHub}}</ref><ref>{{cite web|url=https://github.com/hughperkins/distro-cl|title=cltorch|work=GitHub}}</ref>}} | | {{Depends|Third party implementations<ref>{{cite web|url=https://github.com/torch/torch7/wiki/Cheatsheet#opencl|title=Cheatsheet|work=GitHub}}</ref><ref>{{cite web|url=https://github.com/hughperkins/distro-cl|title=cltorch|work=GitHub}}</ref>}} | ||
| Line 526: | Line 526: | ||
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
| − | | {{Yes}}<ref> | + | | {{Yes}}<ref>https://resources.wolframcloud.com/NeuralNetRepository</ref> |
| {{Yes}} | | {{Yes}} | ||
| {{Yes}} | | {{Yes}} | ||
Revision as of 20:38, 28 March 2023
Youtube search... ...Google search
- Libraries & Frameworks Overview
- Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)
- Machine Translation open-source toolkits | Tsinghua Natural Language Processing Group
- Machine Learning Software | DMOZtools.net
- Python ... Generative AI with Python ... Javascript ... Generative AI with Javascript ... Game Development with Generative AI
- Development ...AI Pair Programming Tools ... Analytics ... Visualization ... Diagrams for Business Analysis
With pages at Primo.ai or not included in Wikipedia Deep learning comparison chart below
- scikit-learn
- PyTorch
- ConvNetJS | Andrej Karpathy
- Accord.Net Framework
- Caffe / Caffe2
- Microsoft Cognitive Toolkit - was Cognitive Toolkit (CNTK)
- gluon
- H20
- MXNet
- Neuroph
- neon
- Deeplearning4j
- theano
- Spark MLlib
- Cloudera Oryx
- GoLearn
- Weka
- Apache Mahout
- Shogun
- Ray - UC Berkeley RISELab
- MLPACK (C++ library)
- Accord.NET
- OpenCV Open Computer Vision - work with images and/or videos and wish to add a variety of classical and state-of-the-art vision algorithms to their toolbox.
- OpenCog, a GPL-licensed framework for artificial intelligence written in C++, Python and Scheme.
- RapidMiner, an environment for machine learning and data mining, now developed commercially.
- Weka, a free implementation of many machine learning algorithms in Java.
|
|