Difference between revisions of "Libraries & Frameworks"

From
Jump to: navigation, search
m
m (Text replacement - "http:" to "https:")
Line 5: Line 5:
 
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
 
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
 
}}
 
}}
[http://www.youtube.com/results?search_query=library+framework+deep+learning+artificial+intelligence+deep+learning Youtube search...]
+
[https://www.youtube.com/results?search_query=library+framework+deep+learning+artificial+intelligence+deep+learning Youtube search...]
[http://www.google.com/search?q=library+framework+deep+machine+learning+deep+learning+ML+artificial+intelligence ...Google search]
+
[https://www.google.com/search?q=library+framework+deep+machine+learning+deep+learning+ML+artificial+intelligence ...Google search]
  
 
* [[Libraries & Frameworks Overview]]
 
* [[Libraries & Frameworks Overview]]
 
* [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)]]
 
* [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)]]
* [http://github.com/THUNLP-MT Machine Translation open-source toolkits | Tsinghua Natural Language Processing Group]
+
* [https://github.com/THUNLP-MT Machine Translation open-source toolkits | Tsinghua Natural Language Processing Group]
* [http://www.dmoztools.net/Computers/Artificial_Intelligence/Machine_Learning/Software/ Machine Learning Software | DMOZtools.net]
+
* [https://www.dmoztools.net/Computers/Artificial_Intelligence/Machine_Learning/Software/ Machine Learning Software | DMOZtools.net]
 
* [[Python]]  ... [[Generative AI with Python]]  ... [[Javascript]]  ... [[Generative AI with Javascript]]  ... [[Game Development with Generative AI]]
 
* [[Python]]  ... [[Generative AI with Python]]  ... [[Javascript]]  ... [[Generative AI with Javascript]]  ... [[Game Development with Generative AI]]
 
* [[Development]]  ...[[Development#AI Pair Programming Tools|AI Pair Programming Tools]] ... [[Analytics]]  ... [[Visualization]]  ... [[Diagrams for Business Analysis]]
 
* [[Development]]  ...[[Development#AI Pair Programming Tools|AI Pair Programming Tools]] ... [[Analytics]]  ... [[Visualization]]  ... [[Diagrams for Business Analysis]]
Line 37: Line 37:
 
* [[Shogun]]
 
* [[Shogun]]
 
* [[Ray - UC Berkeley RISELab]]
 
* [[Ray - UC Berkeley RISELab]]
* [http://en.wikipedia.org/wiki/MLPACK_(C%2B%2B_library) MLPACK (C++ library)]
+
* [https://en.wikipedia.org/wiki/MLPACK_(C%2B%2B_library) MLPACK (C++ library)]
* [http://en.wikipedia.org/wiki/Accord.NET Accord.NET]
+
* [https://en.wikipedia.org/wiki/Accord.NET Accord.NET]
 
* [[Python#OpenCV| OpenCV]] Open Computer Vision - work with images and/or videos and wish to add a variety of classical and state-of-the-art vision algorithms to their toolbox.
 
* [[Python#OpenCV| OpenCV]] Open Computer Vision - work with images and/or videos and wish to add a variety of classical and state-of-the-art vision algorithms to their toolbox.
* [http://en.wikipedia.org/wiki/OpenCog  OpenCog], a GPL-licensed framework for artificial intelligence written in C++, Python and Scheme.
+
* [https://en.wikipedia.org/wiki/OpenCog  OpenCog], a GPL-licensed framework for artificial intelligence written in C++, Python and Scheme.
* [http://en.wikipedia.org/wiki/RapidMiner  RapidMiner], an environment for machine learning and [[data mining]], now developed commercially.
+
* [https://en.wikipedia.org/wiki/RapidMiner  RapidMiner], an environment for machine learning and [[data mining]], now developed commercially.
* [http://en.wikipedia.org/wiki/Weka  Weka], a free implementation of many machine learning algorithms in Java.
+
* [https://en.wikipedia.org/wiki/Weka  Weka], a free implementation of many machine learning algorithms in Java.
  
 
{|<!-- T -->
 
{|<!-- T -->
Line 130: Line 130:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>{{cite web|url=http://caffe.berkeleyvision.org/model_zoo.html|title=Caffe Model Zoo}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://caffe.berkeleyvision.org/model_zoo.html|title=Caffe Model Zoo}}</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
Line 146: Line 146:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Depends|On roadmap}}<ref>{{cite web|url=https://github.com/deeplearning4j/nd4j/issues/27|title=Support for Open CL · Issue #27 · deeplearning4j/nd4j|work=GitHub}}</ref>
 
| {{Depends|On roadmap}}<ref>{{cite web|url=https://github.com/deeplearning4j/nd4j/issues/27|title=Support for Open CL · Issue #27 · deeplearning4j/nd4j|work=GitHub}}</ref>
| {{Yes}}<ref>{{cite web|url=http://nd4j.org/gpu_native_backends.html|title=N-Dimensional Scientific Computing for Java|publisher=}}</ref><ref>{{cite web|url=https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch|title=Comparing Top Deep Learning Frameworks|publisher=Deeplearning4j}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://nd4j.org/gpu_native_backends.html|title=N-Dimensional Scientific Computing for Java|publisher=}}</ref><ref>{{cite web|url=https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch|title=Comparing Top Deep Learning Frameworks|publisher=Deeplearning4j}}</ref>
 
| {{Yes|Computational Graph}}
 
| {{Yes|Computational Graph}}
| {{Yes}}<ref>{{cite web|url=http://deeplearning4j.org/model-zoo|title=Deeplearning4j Models|author1=Chris Nicholson|author2= Adam Gibson|publisher=}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://deeplearning4j.org/model-zoo|title=Deeplearning4j Models|author1=Chris Nicholson|author2= Adam Gibson|publisher=}}</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>{{cite web|url=http://deeplearning4j.org/spark|title=Deeplearning4j on Spark|author=Deeplearning4j|publisher=Deeplearning4j}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://deeplearning4j.org/spark|title=Deeplearning4j on Spark|author=Deeplearning4j|publisher=Deeplearning4j}}</ref>
 
|
 
|
 
|-
 
|-
Line 329: Line 329:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref>
 
| {{Yes}}<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref>
| {{Yes}}<ref name="cntk.ai">{{cite web|url=http://www.cntk.ai/|title=CNTK - Computational Network Toolkit|publisher=Microsoft Corporation}}</ref>
+
| {{Yes}}<ref name="cntk.ai">{{cite web|url=https://www.cntk.ai/|title=CNTK - Computational Network Toolkit|publisher=Microsoft Corporation}}</ref>
 
| {{Yes}}<ref name="cntk.ai" />
 
| {{Yes}}<ref name="cntk.ai" />
 
| {{Yes}}
 
| {{Yes}}
Line 390: Line 390:
 
|-
 
|-
 
|[https://github.com/plaidml/plaidml PlaidML]
 
|[https://github.com/plaidml/plaidml PlaidML]
|[http://vertex.ai Vertex.AI]
+
|[https://vertex.ai Vertex.AI]
 
|[[AGPL 3|AGPL3]]
 
|[[AGPL 3|AGPL3]]
 
| {{Yes}}
 
| {{Yes}}
Line 487: Line 487:
 
| [[Python (programming language)|Python]] ([[Keras]])
 
| [[Python (programming language)|Python]] ([[Keras]])
 
| {{Yes}}
 
| {{Yes}}
| {{Depends|Under development<ref>{{cite web|url=http://deeplearning.net/software/theano/tutorial/using_gpu.html|title=Using the GPU — Theano 0.8.2 documentation|publisher=}}</ref>}}
+
| {{Depends|Under development<ref>{{cite web|url=https://deeplearning.net/software/theano/tutorial/using_gpu.html|title=Using the GPU — Theano 0.8.2 documentation|publisher=}}</ref>}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>http://deeplearning.net/software/theano/library/gradient.html</ref><ref>https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ</ref>
+
| {{Yes}}<ref>https://deeplearning.net/software/theano/library/gradient.html</ref><ref>https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ</ref>
 
| {{Depends|Through Lasagne's model zoo<ref>{{cite web|url=https://github.com/Lasagne/Recipes/tree/master/modelzoo|title=Recipes/modelzoo at master · Lasagne/Recipes · GitHub|work=GitHub}}</ref>}}
 
| {{Depends|Through Lasagne's model zoo<ref>{{cite web|url=https://github.com/Lasagne/Recipes/tree/master/modelzoo|title=Recipes/modelzoo at master · Lasagne/Recipes · GitHub|work=GitHub}}</ref>}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>[http://deeplearning.net/software/theano/tutorial/using_multi_gpu.html Using multiple GPUs — Theano 0.8.2 documentation]</ref>
+
| {{Yes}}<ref>[https://deeplearning.net/software/theano/tutorial/using_multi_gpu.html Using multiple GPUs — Theano 0.8.2 documentation]</ref>
 
|
 
|
 
|-
 
|-
Line 503: Line 503:
 
| [[Linux]], [[macOS]], [[Microsoft Windows|Windows]],<ref>https://github.com/torch/torch7/wiki/Windows</ref> [[Android (operating system)|Android]],<ref>{{cite web|url=https://github.com/soumith/torch-android|title=GitHub - soumith/torch-android: Torch-7 for Android|work=GitHub}}</ref> [[iOS]]
 
| [[Linux]], [[macOS]], [[Microsoft Windows|Windows]],<ref>https://github.com/torch/torch7/wiki/Windows</ref> [[Android (operating system)|Android]],<ref>{{cite web|url=https://github.com/soumith/torch-android|title=GitHub - soumith/torch-android: Torch-7 for Android|work=GitHub}}</ref> [[iOS]]
 
| [[C (programming language)|C]], [[Lua (programming language)|Lua]]
 
| [[C (programming language)|C]], [[Lua (programming language)|Lua]]
| [[Lua (programming language)|Lua]], [[Lua (programming language)|LuaJIT]],<ref>{{cite web|url=http://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf|title=Torch7: A Matlab-like Environment for Machine Learning}}</ref> [[C (programming language)|C]], utility library for [[C++]]/[[OpenCL]]<ref name=jtorch>{{cite web|url=https://github.com/jonathantompson/jtorch|title=GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library|work=GitHub}}</ref>
+
| [[Lua (programming language)|Lua]], [[Lua (programming language)|LuaJIT]],<ref>{{cite web|url=https://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf|title=Torch7: A Matlab-like Environment for Machine Learning}}</ref> [[C (programming language)|C]], utility library for [[C++]]/[[OpenCL]]<ref name=jtorch>{{cite web|url=https://github.com/jonathantompson/jtorch|title=GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library|work=GitHub}}</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Depends|Third party implementations<ref>{{cite web|url=https://github.com/torch/torch7/wiki/Cheatsheet#opencl|title=Cheatsheet|work=GitHub}}</ref><ref>{{cite web|url=https://github.com/hughperkins/distro-cl|title=cltorch|work=GitHub}}</ref>}}
 
| {{Depends|Third party implementations<ref>{{cite web|url=https://github.com/torch/torch7/wiki/Cheatsheet#opencl|title=Cheatsheet|work=GitHub}}</ref><ref>{{cite web|url=https://github.com/hughperkins/distro-cl|title=cltorch|work=GitHub}}</ref>}}
Line 526: Line 526:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>http://resources.wolframcloud.com/NeuralNetRepository</ref>
+
| {{Yes}}<ref>https://resources.wolframcloud.com/NeuralNetRepository</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}

Revision as of 20:38, 28 March 2023

Youtube search... ...Google search

With pages at Primo.ai or not included in Wikipedia Deep learning comparison chart below

Jeremy Howard: Deep Learning Frameworks - TensorFlow, PyTorch, fast.ai | AI Podcast Clips
This is a clip from a conversation with Jeremy Howard from Aug 2019. New full episodes every Mon & Thu and 1-2 new clips or a new non-podcast video on all other days.

Deep Learning Frameworks 2019
Siraj Raval Which deep learning framework should you use? In this video I'll compare 10 deep learning frameworks across a wide variety of metrics. PyTorch, TensorFlow, MXNet, Chainer, CNTK, Sonnet, DeepLearning4J, CoreML, ONNX, we've got a lot to cover in this video! Using code, programmatic features, and theory, I'll navigate this field ultimately coming to some clear conclusions. Enjoy!

Deep learning software by name

Software Creator Software licenseTemplate:Efn Open source Platform Written in Interface OpenMP support OpenCL support CUDA support Parallel execution (multi node) Automatic differentiation<ref>Template:Cite arXiv</ref> Has pretrained models Recurrent nets Convolutional nets RBM/DBNs Metal support
roNNie.ai Kevin Lok MIT Template:Yes Linux, macOS, Windows Python Python Template:Yes Template:Yes Template:Yes Template:Yes
BigDL Jason Dai Apache 2.0 Yes Apache Spark Scala Scala, Python Template:No Template:Yes Template:Yes Template:Yes
Caffe / Caffe2 Berkeley Vision and Learning Center Template:Free Template:Yes Linux, macOS, Windows<ref>Template:Cite web</ref> C++ Python, MATLAB, C++ Template:Yes Template:Depends Template:Yes Template:Yes Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:No Template:Dunno
Deeplearning4j Skymind engineering team; Deeplearning4j community; originally Adam Gibson Template:Free Template:Yes Linux, macOS, Windows, Android (Cross-platform) C++, Java Java, Scala, Clojure, Python (Keras), Kotlin Template:Yes Template:Depends<ref>Template:Cite web</ref> Template:Yes<ref>Template:Cite web</ref><ref>Template:Cite web</ref> Template:Yes Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>Template:Cite web</ref>
Chainer Preferred Networks Template:Free Template:Yes Linux, macOS, Windows Python Template:No Template:No<ref>https://github.com/chainer/chainer/pull/2717</ref><ref>https://github.com/chainer/chainer/issues/99</ref> Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
Darknet Joseph Redmon Template:Free Template:Yes Cross-Platform C C, Python Template:Yes Template:No<ref>https://github.com/pjreddie/darknet/issues/127</ref> Template:Yes Template:Yes
Dlib Davis King Template:Free Template:Yes Cross-Platform C++ C++ Template:Yes Template:No Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
DataMelt (DMelt) S.Chekanov Template:Free Template:Yes Cross-Platform Java Java Template:No Template:No Template:No Template:No Template:No Template:No Template:No Template:No Template:No
DyNet Carnegie Mellon University Template:Free Template:Yes Linux, macOS, Windows C++, Python Template:No<ref>https://github.com/clab/dynet/issues/405</ref> Template:Yes Template:Yes Template:Yes
Intel Data Analytics Acceleration Library Intel Template:Free Template:Yes Linux, macOS, Windows on Intel CPU<ref name="intel-daal">Intel® Data Analytics Acceleration Library (Intel® DAAL) | Intel® Software</ref> C++, Python, Java C++, Python, Java<ref name="intel-daal"/> Template:Yes Template:No Template:No Template:Yes Template:No Template:Yes Template:Yes
Intel Math Kernel Library Intel Template:Proprietary Template:No Linux, macOS, Windows on Intel CPU<ref>Intel® Math Kernel Library (Intel® MKL) | Intel® Software</ref> C<ref>Deep Neural Network Functions</ref> Template:Yes<ref>Using Intel® MKL with Threaded Applications | Intel® Software</ref> Template:No Template:No Template:Yes Template:No Template:Yes<ref name="intel-benchmark">Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast | Intel® Software</ref> Template:Yes<ref name="intel-benchmark"/> Template:No
Keras François Chollet Template:Free Template:Yes Linux, macOS, Windows Python Python, R Template:Depends Template:Depends Template:Yes Template:Yes Template:Yes<ref>https://keras.io/applications/</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>Does Keras support using multiple GPUs? · Issue #2436 · fchollet/keras</ref>
MATLAB + Neural Network Toolbox MathWorks Template:Proprietary Template:No Linux, macOS, Windows C, C++, Java, MATLAB MATLAB Template:No Template:No Template:Yes<ref>Template:Cite web</ref> Template:No Template:Yes<ref name="NNT">Template:Cite web</ref><ref>Template:Cite web</ref> Template:Yes<ref name="NNT"/> Template:Yes<ref name="NNT"/> Template:Yes<ref name="NNT"/> Template:Yes<ref>Template:Cite web</ref>
Microsoft Cognitive Toolkit Microsoft Research Template:Free<ref>Template:Cite web</ref> Template:Yes Windows, Linux<ref name="Setup CNTK on your machine">Template:Cite web</ref> (macOS via Docker on roadmap) C++ Python (Keras), C++, Command line,<ref>Template:Cite web</ref> BrainScript<ref>Template:Cite web</ref> (.NET on roadmap<ref>Template:Cite web</ref>) Template:Yes<ref>Template:Cite web</ref> Template:No Template:Yes Template:Yes Template:Yes<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref> Template:Yes<ref name="cntk.ai">Template:Cite web</ref> Template:Yes<ref name="cntk.ai" /> Template:Yes Template:Yes<ref>Template:Cite web</ref>
Apache MXNet Apache Software Foundation Template:Free Template:Yes Linux, macOS, Windows,<ref>Template:Cite web</ref><ref>Template:Cite web</ref> AWS, Android,<ref>Template:Cite web</ref> iOS, JavaScript<ref>Template:Cite web</ref> Small C++ core library C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl Template:Yes Template:Depends<ref>Template:Cite web</ref> Template:Yes Template:Yes<ref>https://mxnet.readthedocs.io/</ref> Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>Template:Cite web</ref>
Neural Designer Artelnics Template:Proprietary Template:No Linux, macOS, Windows C++ Graphical user interface Template:Yes Template:No Template:No Template:Dunno Template:Dunno Template:No Template:No Template:No Template:Dunno
OpenNN Artelnics Template:Free Template:Yes Cross-platform C++ C++ Template:Yes Template:No Template:Yes Template:Dunno Template:Dunno Template:No Template:No Template:No Template:Dunno
PlaidML Vertex.AI AGPL3 Template:Yes Linux, macOS, Windows C++, Python Keras, Python, C++, C Template:No Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Dunno Template:Yes
PyTorch Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan Template:Free Template:Yes Linux, macOS, Windows Python, C, CUDA Python Template:Yes Template:Depends<ref>https://github.com/hughperkins/pytorch-coriander</ref><ref>https://github.com/pytorch/pytorch/issues/488</ref><ref>https://github.com/pytorch/pytorch/issues/488#issuecomment-273626736</ref> Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
Apache SINGA Apache Incubator Template:Free Template:Yes Linux, macOS, Windows C++ Python, C++, Java Template:No Template:No Template:Yes Template:Dunno Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
TensorFlow Google Brain team Template:Free Template:Yes Linux, macOS, Windows,<ref>https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html</ref> Android C++, Python, CUDA Python (Keras), C/C++, Java, Go, R<ref>Template:Citation</ref>, Julia Template:No Template:Depends<ref name="tensorflow-roadmap">Template:Cite web</ref> but already with SYCL<ref name="GitHub">Template:Cite web</ref> support Template:Yes Template:Yes<ref>https://www.tensorflow.org/</ref> Template:Yes<ref>https://github.com/tensorflow/models</ref> Template:Yes Template:Yes Template:Yes Template:Yes
TensorLayer Hao Dong Template:Free Template:Yes Linux, macOS, Windows,<ref>https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html</ref> Android C++, Python, Python Template:No Template:Depends<ref name="tensorflow-roadmap">Template:Cite web</ref> but already with SYCL<ref name="GitHub">Template:Cite web</ref> support Template:Yes Template:Yes<ref>https://www.tensorflow.org/</ref> Template:Yes<ref>https://github.com/tensorflow/models</ref> Template:Yes Template:Yes Template:Yes Template:Yes
Theano Université de Montréal Template:Free Template:Yes Cross-platform Python Python (Keras) Template:Yes Template:Depends Template:Yes Template:Yes<ref>https://deeplearning.net/software/theano/library/gradient.html</ref><ref>https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ</ref> Template:Depends Template:Yes Template:Yes Template:Yes Template:Yes<ref>Using multiple GPUs — Theano 0.8.2 documentation</ref>
Torch Ronan Collobert, Koray Kavukcuoglu, Clement Farabet Template:Free Template:Yes Linux, macOS, Windows,<ref>https://github.com/torch/torch7/wiki/Windows</ref> Android,<ref>Template:Cite web</ref> iOS C, Lua Lua, LuaJIT,<ref>Template:Cite web</ref> C, utility library for C++/OpenCL<ref name=jtorch>Template:Cite web</ref> Template:Yes Template:Depends Template:Yes<ref>Template:Cite web</ref><ref>Template:Cite web</ref> Template:Yes Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>https://github.com/torch/torch7/wiki/Cheatsheet#distributed-computing--parallel-processing</ref>
Wolfram Mathematica Wolfram Research Template:Proprietary Template:No Windows, macOS, Linux, Cloud computing C++, Wolfram Language, CUDA Wolfram Language Template:Yes Template:No Template:Yes Template:Yes Template:Yes<ref>https://resources.wolframcloud.com/NeuralNetRepository</ref> Template:Yes Template:Yes Template:Yes Template:Depends
VerAI VerAI Template:Proprietary Template:No Linux, Web-based C++,Python, Go, Angular Graphical user interface, cli Template:No Template:No Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes