Difference between revisions of "Principal Component Analysis (PCA)"

From
Jump to: navigation, search
Line 4: Line 4:
 
* [[...find outliers]]
 
* [[...find outliers]]
 
* [http://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection PCA-Based Anomaly Detection | Microsoft]
 
* [http://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/pca-based-anomaly-detection PCA-Based Anomaly Detection | Microsoft]
 +
 +
PCA-based anomaly detection - the vast majority of the data falls into a stereotypical distribution; points deviating dramatically from that distribution are suspect [http://www.linkedin.com/pulse/part-2-keep-simple-machine-learning-algorithms-big-dr-dinesh/ Keep it Simple : Machine Learning & Algorithms for Big Boys | Dinesh Chandrasekar]
  
 
https://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tk/2013/07/figures/ttk20130714602.gif
 
https://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tk/2013/07/figures/ttk20130714602.gif

Revision as of 20:10, 3 June 2018

YouTube search...

PCA-based anomaly detection - the vast majority of the data falls into a stereotypical distribution; points deviating dramatically from that distribution are suspect Keep it Simple : Machine Learning & Algorithms for Big Boys | Dinesh Chandrasekar

ttk20130714602.gif

PCA