Difference between revisions of "Forecasting"
m (→Time Series Forecasting - Statistical) |
m (→Time Series Forecasting - Statistical) |
||
| Line 71: | Line 71: | ||
|| | || | ||
<youtube>YzMV--KhI2I</youtube> | <youtube>YzMV--KhI2I</youtube> | ||
| − | <b> | + | <b>Time Series Forecasting Theory Part 1 - Datamites Data Science Projects |
| − | </b><br> | + | </b><br>Looking for #DataScience #Projects? http://datamites.com/books/ Your can work on above project 'Time Series Forecasting Theory Part 1' |
| + | Trainer: Mr. Ashok Kumar - http://in.linkedin.com/in/ashokka Datamites is one of the leading institutes for Data Science courses. You can learn Data Science with Machine Learning, Statistics, [[Python]], Tableau etc,.. http://datamites.com/ | ||
|} | |} | ||
|}<!-- B --> | |}<!-- B --> | ||
| Line 80: | Line 81: | ||
|| | || | ||
<youtube>1BxeY1Q8Akw</youtube> | <youtube>1BxeY1Q8Akw</youtube> | ||
| − | <b> | + | <b>Python Live - 1| Time Series Analysis in Python | Data Science with [[Python]] Training | Edureka |
| − | </b><br> | + | </b><br>This Edureka Video on Time Series Analysis n [[Python]] will give you all the information you need to do Time Series Analysis and Forecasting in [[Python]]. Machine Learning Tutorial Playlist: http://goo.gl/UxjTxm |
|} | |} | ||
|<!-- M --> | |<!-- M --> | ||
| Line 88: | Line 89: | ||
|| | || | ||
<youtube>LHYUJ9CreN0</youtube> | <youtube>LHYUJ9CreN0</youtube> | ||
| − | <b> | + | <b>Accelerate and Simplify Time Series Analysis and Forecasting with [[Amazon]] Forecast |
| − | </b><br> | + | </b><br>Analyzing and forecasting time series data with traditional methods is a complex and time consuming process that often struggles to produce accurate results for large sets of irregular data by failing to combine it with other relevant independent variables. In this tech talk, we will explore how to accelerate this process by relying on deep learning with the new AI service [[Amazon]] Forecast. We will briefly review how the service works and jump into an end-to-end demonstration on a time series use case, diving deep into the steps of the process. Learning Objectives: |
| + | - Discover the options available for time series data analysis and forecasting with AWS | ||
| + | - Learn how [[Amazon]] Forecast can help you accelerate and simplify complex time series analysis | ||
| + | - Learn how deep learning can increase the accuracy of the forecasts and time series analysis for your data and use cases | ||
|} | |} | ||
|}<!-- B --> | |}<!-- B --> | ||
| Line 97: | Line 101: | ||
|| | || | ||
<youtube>JntA9XaTebs</youtube> | <youtube>JntA9XaTebs</youtube> | ||
| − | <b> | + | <b>Tamara Louie: Applying Statistical Modeling & Machine Learning to Perform Time-Series Forecasting |
| − | </b><br> | + | </b><br>Forecasting time-series data has applications in many fields, including finance, health, etc. There are potential pitfalls when applying classic statistical and machine learning methods to time-series problems. This talk will give folks the basic toolbox to analyze time-series data and perform forecasting using statistical and machine learning models, as well as interpret and convey the outputs. [http://www.slideshare.net/PyData/applying-statistical-modeling-and-machine-learning-to-perform-timeseries-forecasting Slides]. |
|} | |} | ||
|<!-- M --> | |<!-- M --> | ||
| Line 105: | Line 109: | ||
|| | || | ||
<youtube>FPM6it4v8MY</youtube> | <youtube>FPM6it4v8MY</youtube> | ||
| − | <b> | + | <b>ime Series Analysis | Time Series Forecasting | Time Series Analysis in R | Ph.D. (Stanford) |
| − | </b><br> | + | </b><br>Time Series Analysis is a major component of a Data Scientist’s job profile and the average salary of an employee who knows Time Series is 18 lakhs per annum in India and $110k in the United States. So, it becomes a necessity for you to master time series analysis, if you want to get that high-profile data scientist job. Visit Great Learning Academy, to get access to 80+ free courses with 1000+ hours of content on Data Science, Data Analytics, Artificial Intelligence, Big Data, Cloud, Management, Cybersecurity, and many more. These are supplemented with free projects, assignments, datasets, quizzes. You can earn a certificate of completion at the end of the course for free. http://glacad.me/3duVMLE This full course on Time Series Analysis will be taught by Dr Abhinanda Sarkar. Dr Sarkar is the Academic Director at Great Learning for Data Science and Machine Learning Programs. He is ranked amongst the Top 3 Most Prominent Analytics & Data Science Academicians in India. He has taught applied mathematics at the Massachusetts Institute of Technology (MIT) as well as been visiting faculty at Stanford and ISI and continues to teach at the Indian Institute of Management (IIM-Bangalore) and the Indian Institute of Science (IISc). |
|} | |} | ||
|}<!-- B --> | |}<!-- B --> | ||
| Line 114: | Line 118: | ||
[http://www.google.com/search?q=Autoregression+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Autoregression+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>3VzRe9x1Z4E</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 128: | Line 130: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>4O9Rkzm8Q5U</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 138: | Line 140: | ||
[http://www.google.com/search?q=Moving+Average+MA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Moving+Average+MA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>mC1ARrtkObc</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 152: | Line 152: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>kHBLIkADpK0</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 162: | Line 162: | ||
[http://www.google.com/search?q=Autoregressive+Moving+Average+ARMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Autoregressive+Moving+Average+ARMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>bs9fKzuUXtY</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 176: | Line 174: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>HhvTlaN06AM</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 186: | Line 184: | ||
[http://www.google.com/search?q=Autoregressive+Integrated+Moving+Average+ARIMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Autoregressive+Integrated+Moving+Average+ARIMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>0xHf-SJ9Z9U</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 200: | Line 196: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>D9y6dcy0xK8</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 210: | Line 206: | ||
[http://www.google.com/search?q=Autoregressive+Integrated+Moving+Average+SARIMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Autoregressive+Integrated+Moving+Average+SARIMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>WjeGUs6mzXg</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 224: | Line 218: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>voz3oOvKwG4</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 234: | Line 228: | ||
[http://www.google.com/search?q=Seasonal+Autoregressive+Integrated+Moving+Average+Exogenous+Regressors+SARIMAX+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Seasonal+Autoregressive+Integrated+Moving+Average+Exogenous+Regressors+SARIMAX+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>9BdcJisuOkU</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 248: | Line 240: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>9Kc5vuC48ME</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 258: | Line 250: | ||
[http://www.google.com/search?q=Vector+Autoregression+VAR+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Vector+Autoregression+VAR+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>XK3cEJw93jA</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 272: | Line 262: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>i40Road82No</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 282: | Line 272: | ||
[http://www.google.com/search?q=Volume+Weighted+Moving+Average+VWMA+Time+Series+forecasting+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Volume+Weighted+Moving+Average+VWMA+Time+Series+forecasting+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>FfHrlRQUOTs</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 296: | Line 284: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>nSzIkkGXDQQ</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 306: | Line 294: | ||
[http://www.google.com/search?q=Vector+Autoregression+Moving+Average+VARMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Vector+Autoregression+Moving+Average+VARMA+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>zn6r2MeM_LE</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 320: | Line 306: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>bF2Y0sHhd7w</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
| Line 330: | Line 316: | ||
[http://www.google.com/search?q=Vector+Autoregression+Moving+Average+Exogenous+Regressors+VARMAX+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | [http://www.google.com/search?q=Vector+Autoregression+Moving+Average+Exogenous+Regressors+VARMAX+Time+Series+forecasting+Statistical+machine+learning+ML+artificial+intelligence ...Google search] | ||
| − | |||
| − | |||
{|<!-- T --> | {|<!-- T --> | ||
| valign="top" | | | valign="top" | | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>WSgpfNdKQWg</youtube> |
<b>HH1 | <b>HH1 | ||
</b><br>BB1 | </b><br>BB1 | ||
| Line 344: | Line 328: | ||
{| class="wikitable" style="width: 550px;" | {| class="wikitable" style="width: 550px;" | ||
|| | || | ||
| − | <youtube> | + | <youtube>eE7OIKb-Agc</youtube> |
<b>HH2 | <b>HH2 | ||
</b><br>BB2 | </b><br>BB2 | ||
Revision as of 20:27, 12 September 2020
...Google search Youtube search...
|
|
Contents
- 1 Time Series Forecasting
- 2 Time Series Forecasting - Statistical
- 2.1 Autoregression (AR)
- 2.2 Moving Average (MA)
- 2.3 Autoregressive Moving Average (ARMA)
- 2.4 Autoregressive Integrated Moving Average (ARIMA)
- 2.5 Seasonal Autoregressive Integrated Moving-Average (SARIMA)
- 2.6 Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors (SARIMAX)
- 2.7 Vector Autoregression (VAR)
- 2.8 Volume Weighted Moving Average (VWMA)
- 2.9 Vector Autoregression Moving-Average (VARMA)
- 2.10 Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX)
- 3 Smoothing
- 4 Time Series AutoML
- 5 Time Series Forecasting - Deep Learning
- 6 Demand Forecasting
Time Series Forecasting
- How to Tune LSTM Hyperparameters with Keras for Time Series Forecasting | Matt Dancho
- How (not) to use Machine Learning for time series forecasting: Avoiding the pitfalls | Vegard Flovik KDnuggeets
- How (not) to use Machine Learning for time series forecasting: Avoiding the pitfalls | Vegard Flovik - KDnuggets
- Time Series Prediction - 8 Techniques | Siraj Raval
- Amazon Forecast | AWS
- 7 Ways Time-Series Forecasting Differs from Machine Learning | Roman Josue de las Heras Torres
- Finding Patterns and Outcomes in Time Series Data - Hands-On with Python | ViralML.com
- Applying Statistical Modeling and Machine Learning to Perform Time-Series Forecasting | Tamara Louie
- Stationarity in time series analysis | Shay Palachy - Towards Data Science
- [http://www.youtube.com/
Time Series Forecasting - Statistical
Classical time series forecasting methods may be focused on linear relationships, nevertheless, they are sophisticated and perform well on a wide range of problems, assuming that your data is suitably prepared and the method is well configured. 11 Classical Time Series Forecasting Methods in Python (Cheat Sheet) | Jason Brownlee - Machine Learning Mastery
|
|
|
|
|
|
Autoregression (AR)
YouTube search... ...Google search
|
|
Moving Average (MA)
YouTube search... ...Google search
|
|
Autoregressive Moving Average (ARMA)
YouTube search... ...Google search
|
|
Autoregressive Integrated Moving Average (ARIMA)
YouTube search... ...Google search
|
|
Seasonal Autoregressive Integrated Moving-Average (SARIMA)
YouTube search... ...Google search
|
|
Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors (SARIMAX)
YouTube search... ...Google search
|
|
Vector Autoregression (VAR)
YouTube search... ...Google search
|
|
Volume Weighted Moving Average (VWMA)
YouTube search... ...Google search
|
|
Vector Autoregression Moving-Average (VARMA)
YouTube search... ...Google search
|
|
Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX)
YouTube search... ...Google search
|
|
Smoothing
|
|
|
|
Simple Exponential Smoothing (SES)
YouTube search... ...Google search
|
|
Holt's Exponential Smoothing
YouTube search... ...Google search
|
|
Winter's (Holt-Winter's) Exponential Smoothing (HWES)
YouTube search... ...Google search
|
|
Time Series AutoML
|
|
Time Series Forecasting - Deep Learning
Applying deep learning methods like Multilayer Neural Networks and Long Short-Term Memory (LSTM) Recurrent Neural Network models to time series forecasting problems.| Jason Brownlee - Machine Learning Mastery
|
|
|
|
|
|
Demand Forecasting
|
|