Difference between revisions of "Libraries & Frameworks"

From
Jump to: navigation, search
(With pages at Primo.ai or not included in Wikipedia Deep learning comparison chart below)
m
 
(24 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
|title=PRIMO.ai
 
|title=PRIMO.ai
 
|titlemode=append
 
|titlemode=append
|keywords=artificial, intelligence, machine, learning, models, algorithms, data, singularity, moonshot, Tensorflow, Google, Nvidia, Microsoft, Azure, Amazon, AWS  
+
|keywords=ChatGPT, artificial, intelligence, machine, learning, GPT-4, GPT-5, NLP, NLG, NLC, NLU, models, data, singularity, moonshot, Sentience, AGI, Emergence, Moonshot, Explainable, TensorFlow, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Hugging Face, OpenAI, Tensorflow, OpenAI, Google, Nvidia, Microsoft, Azure, Amazon, AWS, Meta, LLM, metaverse, assistants, agents, digital twin, IoT, Transhumanism, Immersive Reality, Generative AI, Conversational AI, Perplexity, Bing, You, Bard, Ernie, prompt Engineering LangChain, Video/Image, Vision, End-to-End Speech, Synthesize Speech, Speech Recognition, Stanford, MIT |description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools  
+
 
 +
<!-- Google tag (gtag.js) -->
 +
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4GCWLBVJ7T"></script>
 +
<script>
 +
  window.dataLayer = window.dataLayer || [];
 +
  function gtag(){dataLayer.push(arguments);}
 +
  gtag('js', new Date());
 +
 
 +
  gtag('config', 'G-4GCWLBVJ7T');
 +
</script>
 
}}
 
}}
[http://www.youtube.com/results?search_query=library+framework+deep+learning+artificial+intelligence+deep+learning Youtube search...]
+
[https://www.youtube.com/results?search_query=ai+library+Libraries+framework YouTube]
[http://www.google.com/search?q=library+framework+deep+machine+learning+deep+learning+ML+artificial+intelligence ...Google search]
+
[https://www.quora.com/search?q=ai%20library%20Libraries%20framework ... Quora]
 +
[https://www.google.com/search?q=ai+library+Libraries+framework ...Google search]
 +
[https://news.google.com/search?q=ai+library+Libraries+framework ...Google News]
 +
[https://www.bing.com/news/search?q=ai+library+Libraries+framework&qft=interval%3d%228%22 ...Bing News]
 +
 
 +
* [[Libraries & Frameworks Overview]] ... [[Libraries & Frameworks]] ... [[Git - GitHub and GitLab]] ... [[Other Coding options]]
 +
* [[Development]] ... [[Notebooks]] ... [[Development#AI Pair Programming Tools|AI Pair Programming]] ... [[Codeless Options, Code Generators, Drag n' Drop|Codeless]] ... [[Hugging Face]] ... [[Algorithm Administration#AIOps/MLOps|AIOps/MLOps]] ... [[Platforms: AI/Machine Learning as a Service (AIaaS/MLaaS)|AIaaS/MLaaS]]
 +
* [[Python]] ... [[Generative AI with Python|GenAI w/ Python]] ... [[JavaScript]] ... [[Generative AI with JavaScript|GenAI w/ JavaScript]] ... [[TensorFlow]] ... [[PyTorch]]
 +
* [[Processing Units - CPU, GPU, APU, TPU, VPU, FPGA, QPU|GPU]]
 +
* [[Gaming]] ... [[Game-Based Learning (GBL)]] ... [[Games - Security|Security]] ... [[Game Development with Generative AI|Generative AI]] ... [[Metaverse#Games - Metaverse|Games - Metaverse]] ... [[Games - Quantum Theme|Quantum]] ... [[Game Theory]] ... [[Game Design | Design]]
 +
* [https://github.com/THUNLP-MT Machine Translation open-source toolkits | Tsinghua Natural Language Processing Group]
 +
* [https://www.dmoztools.net/Computers/Artificial_Intelligence/Machine_Learning/Software/ Machine Learning Software | DMOZtools.net]
 +
 
 +
A library and a framework are both code written by someone else that help you solve common problems in easier ways. However, they differ in how they control the flow of your application.
 +
 
 +
* <b>A library</b> is a collection of functions or classes that you can call from your own code to perform specific tasks. For example, if you want to manipulate strings, you can use a library that provides string functions. You are in charge of when and where to use the library functions. Some examples of AI-related libraries are TensorFlow, Theano, and PyTorch.
 +
* <b>A framework</b> is a set of rules or guidelines that define the structure and behavior of your application. For example, if you want to build a web application, you can use a framework that provides templates, routing, authentication, etc. The framework calls your code at certain points, following the inversion of control principle. Some examples of AI-related frameworks are Angular, Vue, and Microsoft CNTK.
 +
 
 +
The main difference between a library and a framework is who is in control: you control the library, but the framework controls you.
  
* [[Libraries & Frameworks Overview]]
 
* [[Platforms: Machine Learning as a Service (MLaaS)]]
 
* [http://github.com/THUNLP-MT Machine Translation open-source toolkits | Tsinghua Natural Language Processing Group]
 
* [http://www.dmoztools.net/Computers/Artificial_Intelligence/Machine_Learning/Software/ Machine Learning Software | DMOZtools.net]
 
  
 
=== With pages at Primo.ai or not included in Wikipedia  Deep learning comparison chart below ===
 
=== With pages at Primo.ai or not included in Wikipedia  Deep learning comparison chart below ===
Line 17: Line 40:
 
* [[Python#scikit-learn|scikit-learn]]
 
* [[Python#scikit-learn|scikit-learn]]
 
* [[PyTorch]]
 
* [[PyTorch]]
* [[ConvNetJS]]
+
* [[ConvNetJS]] | [[Creatives#Andrej Karpathy |Andrej Karpathy]]
 
* [[Accord.Net Framework]]
 
* [[Accord.Net Framework]]
 
* [[Caffe / Caffe2]]
 
* [[Caffe / Caffe2]]
Line 29: Line 52:
 
* [[theano]]
 
* [[theano]]
 
* [[Spark MLlib]]
 
* [[Spark MLlib]]
* [[Cloudera Oryx]]
+
* [[Cloudera]] Oryx
 
* [[GoLearn]]
 
* [[GoLearn]]
 
* [[Weka]]
 
* [[Weka]]
 
* [[Apache Mahout]]
 
* [[Apache Mahout]]
 
* [[Shogun]]
 
* [[Shogun]]
* [http://en.wikipedia.org/wiki/MLPACK_(C%2B%2B_library) MLPACK (C++ library)]
+
* [[Ray - UC Berkeley RISELab]]
* [http://en.wikipedia.org/wiki/Accord.NET Accord.NET]
+
* [https://en.wikipedia.org/wiki/MLPACK_(C%2B%2B_library) MLPACK (C++ library)]
* [http://opencv.org/ OpenCV (Open Source Computer Vision Library)]
+
* [https://en.wikipedia.org/wiki/Accord.NET Accord.NET]
* [http://en.wikipedia.org/wiki/OpenCog  OpenCog], a GPL-licensed framework for artificial intelligence written in C++, Python and Scheme.
+
* [[Python#OpenCV| OpenCV]] Open Computer Vision - work with images and/or videos and wish to add a variety of classical and state-of-the-art vision algorithms to their toolbox.
* [http://en.wikipedia.org/wiki/RapidMiner  RapidMiner], an environment for machine learning and [[data mining]], now developed commercially.
+
* [https://en.wikipedia.org/wiki/OpenCog  OpenCog], a GPL-licensed framework for artificial intelligence written in C++, Python and Scheme.
* [http://en.wikipedia.org/wiki/Weka  Weka], a free implementation of many machine learning algorithms in Java.
+
* [https://en.wikipedia.org/wiki/RapidMiner  RapidMiner], an environment for machine learning and [[data mining]], now developed commercially.
 +
* [https://en.wikipedia.org/wiki/Weka  Weka], a free implementation of many machine learning algorithms in Java.
 +
 
 +
{|<!-- T -->
 +
| valign="top" |
 +
{| class="wikitable" style="width: 550px;"
 +
||
 +
<youtube>XHyASP49ses</youtube>
 +
<b>Jeremy Howard: Deep Learning Frameworks - TensorFlow, PyTorch, fast.ai | AI Podcast Clips
 +
</b><br>This is a clip from a conversation with Jeremy Howard from Aug 2019. New full episodes every Mon & Thu and 1-2 new clips or a new non-podcast video on all other days.
 +
|}
 +
|<!-- M -->
 +
| valign="top" |
 +
{| class="wikitable" style="width: 550px;"
 +
||
 +
<youtube>SJldOOs4vB8</youtube>
 +
<b>Deep Learning Frameworks 2019
 +
</b><br>[[Creatives#Siraj Raval|Siraj Raval]]  Which deep learning framework should you use? In this video I'll compare 10 deep learning frameworks across a wide variety of metrics. [[PyTorch]], [[TensorFlow]], MXNet, Chainer, CNTK, Sonnet, DeepLearning4J, CoreML, ONNX, we've got a lot to cover in this video! Using code, programmatic features, and theory, I'll navigate this field ultimately coming to some clear conclusions. Enjoy!
 +
|}
 +
|}<!-- B -->
  
 
== Deep learning software by name==
 
== Deep learning software by name==
Line 109: Line 151:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>{{cite web|url=http://caffe.berkeleyvision.org/model_zoo.html|title=Caffe Model Zoo}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://caffe.berkeleyvision.org/model_zoo.html|title=Caffe Model Zoo}}</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
Line 125: Line 167:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Depends|On roadmap}}<ref>{{cite web|url=https://github.com/deeplearning4j/nd4j/issues/27|title=Support for Open CL · Issue #27 · deeplearning4j/nd4j|work=GitHub}}</ref>
 
| {{Depends|On roadmap}}<ref>{{cite web|url=https://github.com/deeplearning4j/nd4j/issues/27|title=Support for Open CL · Issue #27 · deeplearning4j/nd4j|work=GitHub}}</ref>
| {{Yes}}<ref>{{cite web|url=http://nd4j.org/gpu_native_backends.html|title=N-Dimensional Scientific Computing for Java|publisher=}}</ref><ref>{{cite web|url=https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch|title=Comparing Top Deep Learning Frameworks|publisher=Deeplearning4j}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://nd4j.org/gpu_native_backends.html|title=N-Dimensional Scientific Computing for Java|publisher=}}</ref><ref>{{cite web|url=https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch|title=Comparing Top Deep Learning Frameworks|publisher=Deeplearning4j}}</ref>
 
| {{Yes|Computational Graph}}
 
| {{Yes|Computational Graph}}
| {{Yes}}<ref>{{cite web|url=http://deeplearning4j.org/model-zoo|title=Deeplearning4j Models|author1=Chris Nicholson|author2= Adam Gibson|publisher=}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://deeplearning4j.org/model-zoo|title=Deeplearning4j Models|author1=Chris Nicholson|author2= Adam Gibson|publisher=}}</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>{{cite web|url=http://deeplearning4j.org/spark|title=Deeplearning4j on Spark|author=Deeplearning4j|publisher=Deeplearning4j}}</ref>
+
| {{Yes}}<ref>{{cite web|url=https://deeplearning4j.org/spark|title=Deeplearning4j on Spark|author=Deeplearning4j|publisher=Deeplearning4j}}</ref>
 
|
 
|
 
|-
 
|-
Line 308: Line 350:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref>
 
| {{Yes}}<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref>
| {{Yes}}<ref name="cntk.ai">{{cite web|url=http://www.cntk.ai/|title=CNTK - Computational Network Toolkit|publisher=Microsoft Corporation}}</ref>
+
| {{Yes}}<ref name="cntk.ai">{{cite web|url=https://www.cntk.ai/|title=CNTK - Computational Network Toolkit|publisher=Microsoft Corporation}}</ref>
 
| {{Yes}}<ref name="cntk.ai" />
 
| {{Yes}}<ref name="cntk.ai" />
 
| {{Yes}}
 
| {{Yes}}
Line 369: Line 411:
 
|-
 
|-
 
|[https://github.com/plaidml/plaidml PlaidML]
 
|[https://github.com/plaidml/plaidml PlaidML]
|[http://vertex.ai Vertex.AI]
+
|[https://vertex.ai Vertex.AI]
 
|[[AGPL 3|AGPL3]]
 
|[[AGPL 3|AGPL3]]
 
| {{Yes}}
 
| {{Yes}}
Line 466: Line 508:
 
| [[Python (programming language)|Python]] ([[Keras]])
 
| [[Python (programming language)|Python]] ([[Keras]])
 
| {{Yes}}
 
| {{Yes}}
| {{Depends|Under development<ref>{{cite web|url=http://deeplearning.net/software/theano/tutorial/using_gpu.html|title=Using the GPU — Theano 0.8.2 documentation|publisher=}}</ref>}}
+
| {{Depends|Under development<ref>{{cite web|url=https://deeplearning.net/software/theano/tutorial/using_gpu.html|title=Using the GPU — Theano 0.8.2 documentation|publisher=}}</ref>}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>http://deeplearning.net/software/theano/library/gradient.html</ref><ref>https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ</ref>
+
| {{Yes}}<ref>https://deeplearning.net/software/theano/library/gradient.html</ref><ref>https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ</ref>
 
| {{Depends|Through Lasagne's model zoo<ref>{{cite web|url=https://github.com/Lasagne/Recipes/tree/master/modelzoo|title=Recipes/modelzoo at master · Lasagne/Recipes · GitHub|work=GitHub}}</ref>}}
 
| {{Depends|Through Lasagne's model zoo<ref>{{cite web|url=https://github.com/Lasagne/Recipes/tree/master/modelzoo|title=Recipes/modelzoo at master · Lasagne/Recipes · GitHub|work=GitHub}}</ref>}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>[http://deeplearning.net/software/theano/tutorial/using_multi_gpu.html Using multiple GPUs — Theano 0.8.2 documentation]</ref>
+
| {{Yes}}<ref>[https://deeplearning.net/software/theano/tutorial/using_multi_gpu.html Using multiple GPUs — Theano 0.8.2 documentation]</ref>
 
|
 
|
 
|-
 
|-
Line 482: Line 524:
 
| [[Linux]], [[macOS]], [[Microsoft Windows|Windows]],<ref>https://github.com/torch/torch7/wiki/Windows</ref> [[Android (operating system)|Android]],<ref>{{cite web|url=https://github.com/soumith/torch-android|title=GitHub - soumith/torch-android: Torch-7 for Android|work=GitHub}}</ref> [[iOS]]
 
| [[Linux]], [[macOS]], [[Microsoft Windows|Windows]],<ref>https://github.com/torch/torch7/wiki/Windows</ref> [[Android (operating system)|Android]],<ref>{{cite web|url=https://github.com/soumith/torch-android|title=GitHub - soumith/torch-android: Torch-7 for Android|work=GitHub}}</ref> [[iOS]]
 
| [[C (programming language)|C]], [[Lua (programming language)|Lua]]
 
| [[C (programming language)|C]], [[Lua (programming language)|Lua]]
| [[Lua (programming language)|Lua]], [[Lua (programming language)|LuaJIT]],<ref>{{cite web|url=http://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf|title=Torch7: A Matlab-like Environment for Machine Learning}}</ref> [[C (programming language)|C]], utility library for [[C++]]/[[OpenCL]]<ref name=jtorch>{{cite web|url=https://github.com/jonathantompson/jtorch|title=GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library|work=GitHub}}</ref>
+
| [[Lua (programming language)|Lua]], [[Lua (programming language)|LuaJIT]],<ref>{{cite web|url=https://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf|title=Torch7: A Matlab-like Environment for Machine Learning}}</ref> [[C (programming language)|C]], utility library for [[C++]]/[[OpenCL]]<ref name=jtorch>{{cite web|url=https://github.com/jonathantompson/jtorch|title=GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library|work=GitHub}}</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Depends|Third party implementations<ref>{{cite web|url=https://github.com/torch/torch7/wiki/Cheatsheet#opencl|title=Cheatsheet|work=GitHub}}</ref><ref>{{cite web|url=https://github.com/hughperkins/distro-cl|title=cltorch|work=GitHub}}</ref>}}
 
| {{Depends|Third party implementations<ref>{{cite web|url=https://github.com/torch/torch7/wiki/Cheatsheet#opencl|title=Cheatsheet|work=GitHub}}</ref><ref>{{cite web|url=https://github.com/hughperkins/distro-cl|title=cltorch|work=GitHub}}</ref>}}
Line 505: Line 547:
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
| {{Yes}}<ref>http://resources.wolframcloud.com/NeuralNetRepository</ref>
+
| {{Yes}}<ref>https://resources.wolframcloud.com/NeuralNetRepository</ref>
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}
 
| {{Yes}}

Latest revision as of 11:51, 6 November 2024

YouTube ... Quora ...Google search ...Google News ...Bing News

A library and a framework are both code written by someone else that help you solve common problems in easier ways. However, they differ in how they control the flow of your application.

  • A library is a collection of functions or classes that you can call from your own code to perform specific tasks. For example, if you want to manipulate strings, you can use a library that provides string functions. You are in charge of when and where to use the library functions. Some examples of AI-related libraries are TensorFlow, Theano, and PyTorch.
  • A framework is a set of rules or guidelines that define the structure and behavior of your application. For example, if you want to build a web application, you can use a framework that provides templates, routing, authentication, etc. The framework calls your code at certain points, following the inversion of control principle. Some examples of AI-related frameworks are Angular, Vue, and Microsoft CNTK.

The main difference between a library and a framework is who is in control: you control the library, but the framework controls you.


With pages at Primo.ai or not included in Wikipedia Deep learning comparison chart below

Jeremy Howard: Deep Learning Frameworks - TensorFlow, PyTorch, fast.ai | AI Podcast Clips
This is a clip from a conversation with Jeremy Howard from Aug 2019. New full episodes every Mon & Thu and 1-2 new clips or a new non-podcast video on all other days.

Deep Learning Frameworks 2019
Siraj Raval Which deep learning framework should you use? In this video I'll compare 10 deep learning frameworks across a wide variety of metrics. PyTorch, TensorFlow, MXNet, Chainer, CNTK, Sonnet, DeepLearning4J, CoreML, ONNX, we've got a lot to cover in this video! Using code, programmatic features, and theory, I'll navigate this field ultimately coming to some clear conclusions. Enjoy!

Deep learning software by name

Software Creator Software licenseTemplate:Efn Open source Platform Written in Interface OpenMP support OpenCL support CUDA support Parallel execution (multi node) Automatic differentiation<ref>Template:Cite arXiv</ref> Has pretrained models Recurrent nets Convolutional nets RBM/DBNs Metal support
roNNie.ai Kevin Lok MIT Template:Yes Linux, macOS, Windows Python Python Template:Yes Template:Yes Template:Yes Template:Yes
BigDL Jason Dai Apache 2.0 Yes Apache Spark Scala Scala, Python Template:No Template:Yes Template:Yes Template:Yes
Caffe / Caffe2 Berkeley Vision and Learning Center Template:Free Template:Yes Linux, macOS, Windows<ref>Template:Cite web</ref> C++ Python, MATLAB, C++ Template:Yes Template:Depends Template:Yes Template:Yes Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:No Template:Dunno
Deeplearning4j Skymind engineering team; Deeplearning4j community; originally Adam Gibson Template:Free Template:Yes Linux, macOS, Windows, Android (Cross-platform) C++, Java Java, Scala, Clojure, Python (Keras), Kotlin Template:Yes Template:Depends<ref>Template:Cite web</ref> Template:Yes<ref>Template:Cite web</ref><ref>Template:Cite web</ref> Template:Yes Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>Template:Cite web</ref>
Chainer Preferred Networks Template:Free Template:Yes Linux, macOS, Windows Python Template:No Template:No<ref>https://github.com/chainer/chainer/pull/2717</ref><ref>https://github.com/chainer/chainer/issues/99</ref> Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
Darknet Joseph Redmon Template:Free Template:Yes Cross-Platform C C, Python Template:Yes Template:No<ref>https://github.com/pjreddie/darknet/issues/127</ref> Template:Yes Template:Yes
Dlib Davis King Template:Free Template:Yes Cross-Platform C++ C++ Template:Yes Template:No Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
DataMelt (DMelt) S.Chekanov Template:Free Template:Yes Cross-Platform Java Java Template:No Template:No Template:No Template:No Template:No Template:No Template:No Template:No Template:No
DyNet Carnegie Mellon University Template:Free Template:Yes Linux, macOS, Windows C++, Python Template:No<ref>https://github.com/clab/dynet/issues/405</ref> Template:Yes Template:Yes Template:Yes
Intel Data Analytics Acceleration Library Intel Template:Free Template:Yes Linux, macOS, Windows on Intel CPU<ref name="intel-daal">Intel® Data Analytics Acceleration Library (Intel® DAAL) | Intel® Software</ref> C++, Python, Java C++, Python, Java<ref name="intel-daal"/> Template:Yes Template:No Template:No Template:Yes Template:No Template:Yes Template:Yes
Intel Math Kernel Library Intel Template:Proprietary Template:No Linux, macOS, Windows on Intel CPU<ref>Intel® Math Kernel Library (Intel® MKL) | Intel® Software</ref> C<ref>Deep Neural Network Functions</ref> Template:Yes<ref>Using Intel® MKL with Threaded Applications | Intel® Software</ref> Template:No Template:No Template:Yes Template:No Template:Yes<ref name="intel-benchmark">Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast | Intel® Software</ref> Template:Yes<ref name="intel-benchmark"/> Template:No
Keras François Chollet Template:Free Template:Yes Linux, macOS, Windows Python Python, R Template:Depends Template:Depends Template:Yes Template:Yes Template:Yes<ref>https://keras.io/applications/</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>Does Keras support using multiple GPUs? · Issue #2436 · fchollet/keras</ref>
MATLAB + Neural Network Toolbox MathWorks Template:Proprietary Template:No Linux, macOS, Windows C, C++, Java, MATLAB MATLAB Template:No Template:No Template:Yes<ref>Template:Cite web</ref> Template:No Template:Yes<ref name="NNT">Template:Cite web</ref><ref>Template:Cite web</ref> Template:Yes<ref name="NNT"/> Template:Yes<ref name="NNT"/> Template:Yes<ref name="NNT"/> Template:Yes<ref>Template:Cite web</ref>
Microsoft Cognitive Toolkit Microsoft Research Template:Free<ref>Template:Cite web</ref> Template:Yes Windows, Linux<ref name="Setup CNTK on your machine">Template:Cite web</ref> (macOS via Docker on roadmap) C++ Python (Keras), C++, Command line,<ref>Template:Cite web</ref> BrainScript<ref>Template:Cite web</ref> (.NET on roadmap<ref>Template:Cite web</ref>) Template:Yes<ref>Template:Cite web</ref> Template:No Template:Yes Template:Yes Template:Yes<ref>https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820</ref> Template:Yes<ref name="cntk.ai">Template:Cite web</ref> Template:Yes<ref name="cntk.ai" /> Template:Yes Template:Yes<ref>Template:Cite web</ref>
Apache MXNet Apache Software Foundation Template:Free Template:Yes Linux, macOS, Windows,<ref>Template:Cite web</ref><ref>Template:Cite web</ref> AWS, Android,<ref>Template:Cite web</ref> iOS, JavaScript<ref>Template:Cite web</ref> Small C++ core library C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl Template:Yes Template:Depends<ref>Template:Cite web</ref> Template:Yes Template:Yes<ref>https://mxnet.readthedocs.io/</ref> Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>Template:Cite web</ref>
Neural Designer Artelnics Template:Proprietary Template:No Linux, macOS, Windows C++ Graphical user interface Template:Yes Template:No Template:No Template:Dunno Template:Dunno Template:No Template:No Template:No Template:Dunno
OpenNN Artelnics Template:Free Template:Yes Cross-platform C++ C++ Template:Yes Template:No Template:Yes Template:Dunno Template:Dunno Template:No Template:No Template:No Template:Dunno
PlaidML Vertex.AI AGPL3 Template:Yes Linux, macOS, Windows C++, Python Keras, Python, C++, C Template:No Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Dunno Template:Yes
PyTorch Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan Template:Free Template:Yes Linux, macOS, Windows Python, C, CUDA Python Template:Yes Template:Depends<ref>https://github.com/hughperkins/pytorch-coriander</ref><ref>https://github.com/pytorch/pytorch/issues/488</ref><ref>https://github.com/pytorch/pytorch/issues/488#issuecomment-273626736</ref> Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
Apache SINGA Apache Incubator Template:Free Template:Yes Linux, macOS, Windows C++ Python, C++, Java Template:No Template:No Template:Yes Template:Dunno Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes
TensorFlow Google Brain team Template:Free Template:Yes Linux, macOS, Windows,<ref>https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html</ref> Android C++, Python, CUDA Python (Keras), C/C++, Java, Go, R<ref>Template:Citation</ref>, Julia Template:No Template:Depends<ref name="tensorflow-roadmap">Template:Cite web</ref> but already with SYCL<ref name="GitHub">Template:Cite web</ref> support Template:Yes Template:Yes<ref>https://www.tensorflow.org/</ref> Template:Yes<ref>https://github.com/tensorflow/models</ref> Template:Yes Template:Yes Template:Yes Template:Yes
TensorLayer Hao Dong Template:Free Template:Yes Linux, macOS, Windows,<ref>https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html</ref> Android C++, Python, Python Template:No Template:Depends<ref name="tensorflow-roadmap">Template:Cite web</ref> but already with SYCL<ref name="GitHub">Template:Cite web</ref> support Template:Yes Template:Yes<ref>https://www.tensorflow.org/</ref> Template:Yes<ref>https://github.com/tensorflow/models</ref> Template:Yes Template:Yes Template:Yes Template:Yes
Theano Université de Montréal Template:Free Template:Yes Cross-platform Python Python (Keras) Template:Yes Template:Depends Template:Yes Template:Yes<ref>https://deeplearning.net/software/theano/library/gradient.html</ref><ref>https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ</ref> Template:Depends Template:Yes Template:Yes Template:Yes Template:Yes<ref>Using multiple GPUs — Theano 0.8.2 documentation</ref>
Torch Ronan Collobert, Koray Kavukcuoglu, Clement Farabet Template:Free Template:Yes Linux, macOS, Windows,<ref>https://github.com/torch/torch7/wiki/Windows</ref> Android,<ref>Template:Cite web</ref> iOS C, Lua Lua, LuaJIT,<ref>Template:Cite web</ref> C, utility library for C++/OpenCL<ref name=jtorch>Template:Cite web</ref> Template:Yes Template:Depends Template:Yes<ref>Template:Cite web</ref><ref>Template:Cite web</ref> Template:Yes Template:Yes<ref>Template:Cite web</ref> Template:Yes Template:Yes Template:Yes Template:Yes<ref>https://github.com/torch/torch7/wiki/Cheatsheet#distributed-computing--parallel-processing</ref>
Wolfram Mathematica Wolfram Research Template:Proprietary Template:No Windows, macOS, Linux, Cloud computing C++, Wolfram Language, CUDA Wolfram Language Template:Yes Template:No Template:Yes Template:Yes Template:Yes<ref>https://resources.wolframcloud.com/NeuralNetRepository</ref> Template:Yes Template:Yes Template:Yes Template:Depends
VerAI VerAI Template:Proprietary Template:No Linux, Web-based C++,Python, Go, Angular Graphical user interface, cli Template:No Template:No Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes Template:Yes