Difference between revisions of "T-Distributed Stochastic Neighbor Embedding (t-SNE)"

From
Jump to: navigation, search
(Created page with "[http://www.youtube.com/results?search_query=T-SNE+Dimensional+Reduction+Algorithm Youtube search...] * Principle Component Analysis (PCA) * Softmax * Pooling / Sub...")
 
m
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
{{#seo:
 +
|title=PRIMO.ai
 +
|titlemode=append
 +
|keywords=artificial, intelligence, machine, learning, models, algorithms, data, singularity, moonshot, Tensorflow, Google, Nvidia, Microsoft, Azure, Amazon, AWS
 +
|description=Helpful resources for your journey with artificial intelligence; videos, articles, techniques, courses, profiles, and tools
 +
}}
 
[http://www.youtube.com/results?search_query=T-SNE+Dimensional+Reduction+Algorithm Youtube search...]
 
[http://www.youtube.com/results?search_query=T-SNE+Dimensional+Reduction+Algorithm Youtube search...]
 +
[http://www.google.com/search?q=T-SNE+Dimensional+Reduction+Algorithm ...Google search]
  
* [[Principle Component Analysis (PCA)]]
+
* [[Principal Component Analysis (PCA)]]
 +
* [[Embedding]] ... [[Fine-tuning]] ... [[Retrieval-Augmented Generation (RAG)|RAG]] ... [[Agents#AI-Powered Search|Search]] ... [[Clustering]] ... [[Recommendation]] ... [[Anomaly Detection]] ... [[Classification]] ... [[Dimensional Reduction]].  [[...find outliers]]
 +
** [[Local Linear Embedding (LLE)]]
 +
* [[Dimensional Reduction]] Algorithms
 
* [[Softmax]]
 
* [[Softmax]]
 
* [[Pooling / Sub-sampling: Max, Mean]]
 
* [[Pooling / Sub-sampling: Max, Mean]]
 
* [[(Deep) Convolutional Neural Network (DCNN/CNN)]]
 
* [[(Deep) Convolutional Neural Network (DCNN/CNN)]]
 
* [http://files.knime.com/sites/default/files/inline-images/knime_seventechniquesdatadimreduction.pdf Seven Techniques for Dimensionality Reduction | KNIME]
 
* [http://files.knime.com/sites/default/files/inline-images/knime_seventechniquesdatadimreduction.pdf Seven Techniques for Dimensionality Reduction | KNIME]
 +
* [[Principal Component Analysis (PCA)]] ...linear
 +
* [[TensorFlow]]
 +
** [http://projector.tensorflow.org/ Embedding Projector]
 +
* [[Visualization]]
 +
* [http://distill.pub/2016/misread-tsne/ How to Use t-SNE Effectively |]  [[Creatives#Martin Wattenberg |Martin Wattenberg]] - Distill
  
 +
a machine learning algorithm for visualization developed by Laurens van der Maaten and [[Creatives#Geoffrey Hinton |Geoffrey Hinton]]. It is a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points with high probability. [http://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding Wikipedia]
 +
 +
 +
<youtube>wvsE8jm1GzE</youtube>
 
<youtube>NEaUSP4YerM</youtube>
 
<youtube>NEaUSP4YerM</youtube>
 
<youtube>RJVL80Gg3lA</youtube>
 
<youtube>RJVL80Gg3lA</youtube>
 
<youtube>p3wFE85dAyY</youtube>
 
<youtube>p3wFE85dAyY</youtube>
 
<youtube>ohQXphVSEQM</youtube>
 
<youtube>ohQXphVSEQM</youtube>
 +
 +
 +
http://miro.medium.com/max/1396/1*RmG8qwjGGbp_CAXA8eDISQ.png

Latest revision as of 09:48, 13 September 2023

Youtube search... ...Google search

a machine learning algorithm for visualization developed by Laurens van der Maaten and Geoffrey Hinton. It is a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points with high probability. Wikipedia



1*RmG8qwjGGbp_CAXA8eDISQ.png