Difference between revisions of "Attention"

From
Jump to: navigation, search
(Attention Is All You Need)
Line 18: Line 18:
  
 
http://skymind.ai/images/wiki/attention_mechanism.png
 
http://skymind.ai/images/wiki/attention_mechanism.png
 +
 +
<youtube>omHLeV1aicw</youtube>
 +
<youtube>ZwvWY9Yy76Q</youtube>
 +
<youtube>BN7Kp0JD04o</youtube>
 +
<youtube>S6u2KMKBkaU</youtube>
 +
<youtube>O6q-_KrTZoo</youtube>
 +
<youtube>5ekMog_nhaQ</youtube>
 +
 +
== Attention in Neural Networks ==
  
 
<youtube>W2rWgXJBZhU</youtube>
 
<youtube>W2rWgXJBZhU</youtube>
<youtube>omHLeV1aicw</youtube>
 
 
<youtube>SysgYptB198</youtube>
 
<youtube>SysgYptB198</youtube>
 
<youtube>quoGRI-1l0A</youtube>
 
<youtube>quoGRI-1l0A</youtube>
Line 29: Line 37:
  
 
<youtube>iDulhoQ2pro</youtube>
 
<youtube>iDulhoQ2pro</youtube>
 +
 +
http://skymind.ai/images/wiki/memory-network.png
 +
  
 
== Making decisions about where to send information ==
 
== Making decisions about where to send information ==

Revision as of 07:27, 30 June 2019

YouTube search... ...Google search

Attention mechanisms in neural networks are about memory access. That’s the first thing to remember about attention: it’s something of a misnomer. A Beginner's Guide to Attention Mechanisms and Memory Networks | Skymind

3 ways of Attention:

  1. Autoencoder (AE) / Encoder-Decoder
  2. Encoder Self-Attention
  3. MaskedDecoder Self-Attention

attention_mechanism.png

Attention in Neural Networks

Attention Is All You Need

The dominant sequence transduction models are based on complex Recurrent Neural Network (RNN)) or (Deep) Convolutional Neural Network (DCNN/CNN) in an encoder-decoder (Autoencoder (AE) / Encoder-Decoder} configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Attention Is All You Need | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and I. Polosukhin - Google

memory-network.png


Making decisions about where to send information

Making decisions about where to send information. An AI Pioneer Explains The Evolution Of Neural Networks | Nichokas Thompson - Wired