Difference between revisions of "Early Stopping"
Line 9: | Line 9: | ||
* add more data | * add more data | ||
* use [[Data Augmentation]] | * use [[Data Augmentation]] | ||
− | * use | + | * use [[Batch Normalization]] |
* use architectures that generalize well | * use architectures that generalize well | ||
* reduce architecture complexity | * reduce architecture complexity |
Revision as of 17:03, 30 December 2018
Youtube search... ...Google search
Good practices for addressing the Overfitting Challenge:
- add more data
- use Data Augmentation
- use Batch Normalization
- use architectures that generalize well
- reduce architecture complexity
- add Regularization
- L1 and L2 Regularization - update the general cost function by adding another term known as the regularization term.
- Dropout - at every iteration, it randomly selects some nodes and temporarily removes the nodes (along with all of their incoming and outgoing connections)
- Data Augmentation
- Early Stopping