Difference between revisions of "Latent Dirichlet Allocation (LDA)"
| Line 7: | Line 7: | ||
<youtube>Q-CPrg5Bfd0</youtube> | <youtube>Q-CPrg5Bfd0</youtube> | ||
| + | == Term Frequency–Inverse Document Frequency (TF-IDF) == | ||
| + | [http://www.youtube.com/results?search_query=TF-IDF+term+Frequency+Inverse+Document+Frequency+nlp+nli+natural+language+semantics Youtube search...] | ||
| + | |||
| + | <youtube>hXNbFNCgPfY</youtube> | ||
| + | <youtube>4vT4fzjkGCQ</youtube> | ||
== Probabilistic Latent Semantic Analysis (PLSA) == | == Probabilistic Latent Semantic Analysis (PLSA) == | ||
| + | [http://www.youtube.com/results?search_query=LSA+PLSA+Probabilistic+Latent+Semantic+Analysis+nlp+nli+natural+language+semantics Youtube search...] | ||
<youtube>BJ0MnawUpaU</youtube> | <youtube>BJ0MnawUpaU</youtube> | ||
<youtube>vtadpVDr1hM</youtube> | <youtube>vtadpVDr1hM</youtube> | ||
Revision as of 22:04, 6 September 2018
- Natural Language Processing (NLP), Natural Language Inference (NLI) and Recognizing Textual Entailment (RTE)
- Beautiful Soup a Python library designed for quick turnaround projects like screen-scraping
Term Frequency–Inverse Document Frequency (TF-IDF)
Probabilistic Latent Semantic Analysis (PLSA)