Difference between revisions of "Point Cloud"

From
Jump to: navigation, search
Line 60: Line 60:
 
<youtube>lbObxT7lJrI</youtube>
 
<youtube>lbObxT7lJrI</youtube>
 
<youtube>7s3BYGok7wU</youtube>
 
<youtube>7s3BYGok7wU</youtube>
 +
 +
== Kd-Networks ==
 +
* [http://arxiv.org/pdf/1704.01222.pdf Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models | Roman Klokov and Victor Lempitsky] ... [http://github.com/Regenerator/kdnets GitHub] This code uses python2.7 with theano(0.9.0) installed over Cuda8.0 with CuDNN5.1 and Lasagne(0.2.dev1).
 +
 +
<youtube>6UV_ASKa2RM</youtube>
 +
  
 
== Vote3Deep ==
 
== Vote3Deep ==

Revision as of 15:50, 30 July 2020

Youtube search... ...Google search

A point cloud is a set of data points in space. Point clouds are generally produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them. As the output of 3D scanning processes, point clouds are used for many purposes, including to create 3D CAD models for manufactured parts, for metrology and quality inspection, and for a multitude of visualization, animation, rendering and mass customization applications. [A point cloud is a set of data points in space. Point clouds are generally produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them. As the output of 3D scanning processes, point clouds are used for many purposes, including to create 3D CAD models for manufactured parts, for metrology and quality inspection, and for a multitude of visualization, animation, rendering and mass customization applications. Point Cloud and List of programs for Point Cloud processing | Wikipedia

Although Convolutional Neural Networks are the state of the art techniques for 2D object detection, they do not perform well on 3D point cloud due to the sparse sensor data, therefore new techniques are needed. 3D Object Detection from LiDAR Data with Deep Learning | SmartLab AI - Medium


SPLATNet

PointNet



Vote3Deep

SqueezeSeg

Neural Point-Based Graphics

Kd-Networks


Vote3Deep

Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

3D Point Cloud Classification, Segmentation and Normal estimation

using Modified Fisher Vector and CNNs

  • [http://arxiv.org/pdf/1711.08241.pdf 3DmFV: Three-Dimensional Point Cloud Classification in Real-Time Using Convolutional Neural Networks | Y. Ben-Shabat, M. Lindenbaum, and A. Fischer

Modified Fisher Vector (3DmFV)

3d_fv_smaller-compressor.gif