Difference between revisions of "Cross-Entropy Loss"
| Line 9: | Line 9: | ||
* [[hyperparameter]] | * [[hyperparameter]] | ||
| + | |||
| + | Cross-entropy loss, or log loss, measures the performance of a classification model whose output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted probability diverges from the actual label. [http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html | ||
Cross-entropy loss is one of the most widely used loss functions in classification scenarios. In face recognition tasks, the cross-entropy loss is an effective method to eliminate outliers. [http://arxiv.org/pdf/1904.09523.pdf Neural Architecture Search for Deep Face Recognition | Ning Zhu] | Cross-entropy loss is one of the most widely used loss functions in classification scenarios. In face recognition tasks, the cross-entropy loss is an effective method to eliminate outliers. [http://arxiv.org/pdf/1904.09523.pdf Neural Architecture Search for Deep Face Recognition | Ning Zhu] | ||
| + | |||
| + | http://ml-cheatsheet.readthedocs.io/en/latest/_images/cross_entropy.png | ||
Revision as of 18:56, 9 April 2020
YouTube search... ...Google search
Cross-entropy loss, or log loss, measures the performance of a classification model whose output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted probability diverges from the actual label. [http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
Cross-entropy loss is one of the most widely used loss functions in classification scenarios. In face recognition tasks, the cross-entropy loss is an effective method to eliminate outliers. Neural Architecture Search for Deep Face Recognition | Ning Zhu