Benchmarks

From
Jump to: navigation, search

YouTube search... ...Google search



GLUE

The General Language Understanding Evaluation (GLUE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems... like picking out the names of people and organizations in a sentence and figuring out what a pronoun like “it” refers to when there are multiple potential antecedents. GLUE consists of: A benchmark of nine sentence- or sentence-pair language understanding tasks built on established existing datasets and selected to cover a diverse range of dataset sizes, text genres, and degrees of difficulty, A diagnostic dataset designed to evaluate and analyze model performance with respect to a wide range of linguistic phenomena found in natural language, and A public leaderboard for tracking performance on the benchmark and a dashboard for visualizing the performance of models on the diagnostic set.

The Stanford Question Answering Dataset (SQuAD)

ReAding Comprehension (RACE)


MLPerf

  • MLPerf benchmarks for measuring training and inference performance of ML hardware, software, and services.

Procgen

ezgif-4-3630016ea205.gif

OpenAI previously released Neural MMO, a “massively multiagent” virtual training ground that plops agents in the middle of an RPG-like world, and Gym, a proving ground for algorithms for reinforcement learning (which involves training machines to do things based on trial and error). More recently, it made available SafetyGym, a suite of tools for developing AI that respects safety constraints while training, and for comparing the “safety” of algorithms and the extent to which those algorithms avoid mistakes while learning.